Impact of Microstructure on Sensing Performance of Fiber-Based Iontronic Pressure Sensors: A Comparative Study
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Preparation and Characterization of Fiber-Based Ionic Layers
3.2. Performance of Fiber-Based Iontronic Pressure Sensors
3.3. Wearable Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| IL | ionic liquid |
| EDL | electric double layer |
| TPU | Thermoplastic polyurethane |
References
- Niu, H.; Li, H.; Li, Y.; Yue, W.; Gao, S.; Wei, X.; Shen, G. Cocklebur-Inspired “Branch-Seed-Spininess” 3D Hierarchical Structure Bionic Electronic Skin for Intelligent Perception. Nano Energy 2023, 107, 108144. [Google Scholar] [CrossRef]
- Gong, Y.; Cheng, G.; Zhao, F.; Zhang, B.; Yuan, J.; Wei, D. Wide Linear Range Fabric Pressure Sensors Based on Multiscale Inorganic Structures. IEEE Sens. J. 2025, 25, 10655–10662. [Google Scholar] [CrossRef]
- Yang, J.-S.; Chung, M.-K.; Yoo, J.-Y.; Kim, M.-U.; Kim, B.-J.; Jo, M.-S.; Kim, S.-H.; Yoon, J.-B. Interference-Free Nanogap Pressure Sensor Array with High Spatial Resolution for Wireless Human-Machine Interfaces Applications. Nat. Commun. 2025, 16, 2024. [Google Scholar] [CrossRef]
- Wang, P.; Li, X.; Sun, G.; Wang, G.; Han, Q.; Meng, C.; Wei, Z.; Li, Y. Natural Human Skin-Inspired Wearable and Breathable Nanofiber-Based Sensors with Excellent Thermal Management Functionality. Adv. Fiber Mater. 2024, 6, 1955–1968. [Google Scholar] [CrossRef]
- Jin, T.; Pan, Y.; Park, S.-H.K.; Fang, D.-W. Ultrathin Flexible Pressure Sensors Using Microbead Embedded Nanofibrous Membrane for Wearable Applications. J. Alloys Compd. 2025, 1014, 178609. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Yang, F.; Zhou, H.; Zong, S.; Zhang, B.; Cao, L. High-Sensitivity and Wide-Range Biomimetic Crack Flexible Pressure Sensor. IEEE Trans. Instrum. Meas. 2025, 74, 1–8. [Google Scholar] [CrossRef]
- Rukshana Bi, G.; Chhetri, B.; Upreti, A.; Jindal, S.K.; Patil, H.Y. Capacitance Dynamics in W-Shaped Silicon Substrate Mems Double-Touch Mode Pressure Sensor. Meas. Sci. Technol. 2025, 36, 025107. [Google Scholar] [CrossRef]
- Rukshana Bi, G.; Motwani, M.; Jindal, S.K. Analytical Formulation and Numerical Investigation of Electromechanical Dynamics in Circular Biconvex Diaphragm Capacitive Pressure Sensor. IEEE Sens. J. 2025, 25, 18867–18875. [Google Scholar] [CrossRef]
- Xu, J.; Ma, J.; Lian, J.; Liao, Y.; Wang, L.; Dong, L.; Sun, H. Design of Flexible Resistance Sensor Based on Mesh Convex Microstructure. J. Phys. D-Appl. Phys. 2022, 55, 315401. [Google Scholar] [CrossRef]
- Yan, B.; Ding, H.; Zhang, Y.; Lin, P.; Wu, D.; Shi, Z.; Chen, X.; Tian, Y.; Li, X. Skin-Attachable and Flexible Mwcnt Grid/Ecoflex Strain Sensors with Fast Equilibrium of Response for Detection of Sound Vibrations and Human Motions. J. Mater. Sci.-Mater. Electron. 2021, 32, 26439–26448. [Google Scholar] [CrossRef]
- Ying, B.; Chen, R.Z.; Zuo, R.; Li, J.; Liu, X. An Anti-Freezing, Ambient-Stable and Highly Stretchable Ionic Skin with Strong Surface Adhesion for Wearable Sensing and Soft Robotics. Adv. Funct. Mater. 2021, 31, 2104665. [Google Scholar] [CrossRef]
- Yan, X.; Wang, S.; Nie, G.; Gao, Y.; Li, L.; Zhang, T.; Long, Y.-Z.; Han, W. The Iontronic Sensor Based on Biodegradable Polycaprolactone for Interfacial Capacitive Pressure Sensing. J. Mater. Sci.-Mater. Electron. 2024, 35, 1093. [Google Scholar] [CrossRef]
- Li, J.; Lu, J.; Zhang, K.; Wu, J.; Zhang, C.; Cai, X.; Xu, L.; Cao, Z.; Li, Y.; Wang, X.; et al. Freeze-Drying Induced Gradient Microporous Composite Film with High Ionic Conductivity for Ultrasensitive Wearable Iontronic Pressure Sensor. Chem. Eng. J. 2024, 493, 152450. [Google Scholar] [CrossRef]
- Tang, J.; Zhao, C.; Luo, Q.; Chang, Y.; Yang, Z.; Pan, T. Ultrahigh-Transparency and Pressure-Sensitive Iontronic Device for Tactile Intelligence. npj Flex. Electron. 2022, 6, 54. [Google Scholar] [CrossRef]
- Zheng, Q.; Dai, X.; Wu, Y.; Liang, Q.; Wu, Y.; Yang, J.; Dong, B.; Gao, G.; Qin, Q.; Huang, L.-B. Self-Powered High-Resolution Smart Insole System for Plantar Pressure Mapping. Bmemat 2023, 1, E12008. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, Y.; Yang, H.; Oh, J.H. Fabrication of Hierarchically Porous Structured Pdms Composites and Their Application as A Flexible Capacitive Pressure Sensor. Compos. Part B-Eng. 2021, 211, 108607. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, L.; Li, H.; Lai, X.; Zeng, X. Skin-Inspired Flexible and High-Performance Mxene@Polydimethylsiloxane Piezoresistive Pressure Sensor for Human Motion Detection. J. Colloid Interface Sci. 2022, 617, 478–488. [Google Scholar] [CrossRef]
- Seong, J.; Bak, B.-U.; Jin, J.; Kim, J. Tribo-Piezoelectric Synergistic BaTiO3/Pdms Micropyramidal Structure for High-Performance Energy Harvester and High-Sensitivity Tactile Sensing. Nano Energy 2024, 122, 109264. [Google Scholar] [CrossRef]
- Su, D.; Shen, G.; Li, J.; Qin, B.; Wang, S.; Yang, W.; He, X. Enhanced Sensitivity and Linear-Response in Iontronic Pressure Sensors for Non-Contact, High-Frequency Vibration Recognition. J. Colloid Interface Sci. 2024, 659, 1042–1051. [Google Scholar] [CrossRef]
- Lee, J.-E.; Kim, S.-U.; Kim, J.-Y. Fabrication of A Capacitive 3D Spacer Fabric Pressure Sensor with A Dielectric Constant Change for High Sensitivity. Sensors 2024, 24, 3395. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Wu, J.; He, S.; Su, B.; Li, Z.; Wang, Y. Bioinspired Spinosum Capacitive Pressure Sensor Based on Cnt/Pdms Nanocomposites for Broad Range and High Sensitivity. Nanomaterials 2022, 12, 3265. [Google Scholar] [CrossRef]
- Chen, S.; Guo, X. Improving The Sensitivity of Elastic Capacitive Pressure Sensors Using Silver Nanowire Mesh Electrodes. IEEE Trans. Nanotechnol. 2015, 14, 619–623. [Google Scholar] [CrossRef]
- You, B.; Han, C.J.; Kim, Y.; Ju, B.-K.; Kim, J.-W. A Wearable Piezocapacitive Pressure Sensor with a Single Layer of Silver Nanowire-Based Elastomeric Composite Electrodes. J. Mater. Chem. A 2016, 4, 10435–10443. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Lu, J.-G.; Shieh, H.-P.D. Influence of Permittivity on the Sensitivity of Porous Elastomer-Based Capacitive Pressure Sensors. IEEE Sens. J. 2018, 18, 1870–1876. [Google Scholar] [CrossRef]
- Yang, J.C.; Kim, J.-O.; Oh, J.; Kwon, S.Y.; Sim, J.Y.; Kim, D.W.; Choi, H.B.; Park, S. Microstructured Porous Pyramid-Based Ultrahigh Sensitive Pressure Sensor Insensitive To Strain and Temperature. ACS Appl. Mater. Interfaces 2019, 11, 19472–19480. [Google Scholar] [CrossRef]
- Zhao, K.; Han, J.; Ma, Y.; Tong, Z.; Suhr, J.; Wang, M.; Xiao, L.; Jia, S.; Chen, X. Highly Sensitive and Flexible Capacitive Pressure Sensors Based on Vertical Graphene and Micro-Pyramidal Dielectric Layer. Nanomaterials 2023, 13, 701. [Google Scholar] [CrossRef]
- Thouti, E.; Nagaraju, A.; Chandran, A.; Prakash, P.V.B.S.S.; Shivanarayanamurthy, P.; Lal, B.; Kumar, P.; Kothari, P.; Panwar, D. Tunable Flexible Capacitive Pressure Sensors Using Arrangement of Polydimethylsiloxane Micro-Pyramids for Bio-Signal Monitoring. Sens. Actuators A-Phys. 2020, 314, 112251. [Google Scholar] [CrossRef]
- Zhao, Z.; Guo, Q.; Sun, Y.; An, N.; Hui, P.; Yang, L.; Chen, X. Bioinspired Hierarchical Structure for an Ultrawide-Range Multifunctional Flexible Sensor Using Porous Expandable Polyethylene/Loofah-Like Polyurethane Sponge Material. Adv. Intell. Syst. 2023, 5, 2200295. [Google Scholar] [CrossRef]
- He, S.; Wu, J.; Duan, Y.; Su, B.; Liu, S.; Teng, F.; Wang, Y. Soft-Template Synthesis of Hierarchically Porous Structured Polydimethylsiloxane Toward Flexible Capacitive Pressure Sensor. Sci. China-Technol. Sci. 2023, 66, 2696–2706. [Google Scholar] [CrossRef]
- Luo, Y.; Shao, J.; Chen, S.; Chen, X.; Tian, H.; Li, X.; Wang, L.; Wang, D.; Lu, B. Flexible Capacitive Pressure Sensor Enhanced by Tilted Micropillar Arrays. ACS Appl. Mater. Interfaces 2019, 11, 17796–17803. [Google Scholar] [CrossRef]
- Xu, T.; Li, K.; Zhou, Y.; Zhang, D.; Sheng, B. Flexible, Super-Stable, and Multifunctional Capacitive Pressure Sensors with Tilted Micropillar Array by Inclined Laser Ablation and Demolding. IEEE Sens. J. 2025, 25, 9367–9374. [Google Scholar] [CrossRef]
- Li, R.; Si, Y.; Zhu, Z.; Guo, Y.; Zhang, Y.; Pan, N.; Sun, G.; Pan, T. Supercapacitive Iontronic Nanofabric Sensing. Adv. Mater. 2017, 29, 1700253. [Google Scholar] [CrossRef]
- Gou, X.; Yang, J.; Li, P.; Zhou, Z.; Liao, C.; Zhang, C.; Dong, C.; Li, C. Biomimetic Nanofiber-Iongel Composites for Flexible Pressure Sensors with Broad Range and Ultra-High Sensitivity. Nano Energy 2024, 120, 109140. [Google Scholar] [CrossRef]
- Fan, X.; Liu, S.; Jia, Z.; Koh, J.J.; Yeo, J.C.C.; Wang, C.-G.; Surat’man, N.E.; Loh, X.J.; Le Bideau, J.; He, C.; et al. Ionogels: Recent Advances in Design, Material Properties and Emerging Biomedical Applications. Chem. Soc. Rev. 2023, 52, 2497–2527. [Google Scholar] [CrossRef] [PubMed]
- Nie, B.; Li, R.; Brandt, J.D.; Pan, T. Iontronic Microdroplet Array for Flexible Ultrasensitive Tactile Sensing. Lab A Chip 2014, 14, 1107–1116. [Google Scholar] [CrossRef]
- Zhang, X. High-Sensitivity Antidrying Hydrogel Sensor with Interpenetrating Network Crosslinking Structure. J. Mater. Sci.-Mater. Electron. 2023, 34, 540. [Google Scholar] [CrossRef]
- Niu, H.; Wei, X.; Li, H.; Yin, F.; Wang, W.; Seong, R.-S.; Shin, Y.K.; Yao, Z.; Li, Y.; Kim, E.-S.; et al. Micropyramid Array Bimodal Electronic Skin for Intelligent Material and Surface Shape Perception Based on Capacitive Sensing. Adv. Sci. 2024, 11, 2305528. [Google Scholar] [CrossRef]
- Bai, N.; Wang, L.; Wang, Q.; Deng, J.; Wang, Y.; Lu, P.; Huang, J.; Li, G.; Zhang, Y.; Yang, J.; et al. Graded Intrafillable Architecture-Based Iontronic Pressure Sensor with Ultra-Broad-Range High Sensitivity. Nat. Commun. 2020, 11, 209. [Google Scholar] [CrossRef]
- Zhang, M.; Gu, M.; Shao, L.; Cheng, G.; Gao, H.; Sun, B.; Li, S.; Tang, T.; Li, N.; Yi, Y.; et al. Flexible Wearable Capacitive Sensors Based on Ionic Gel with Full-Pressure Ranges. ACS Appl. Mater. Interfaces 2023, 15, 15884–15892. [Google Scholar] [CrossRef]
- Li, P.; Xie, L.; Su, M.; Wang, P.; Yuan, W.; Dong, C.; Yang, J. Skin-Inspired Large Area Iontronic Pressure Sensor with Ultra-Broad Range and High Sensitivity. Nano Energy 2022, 101, 107571. [Google Scholar] [CrossRef]
- Li, L.; Zhu, G.; Wang, J.; Chen, J.; Zhao, G.; Zhu, Y. A Flexible and Ultrasensitive Interfacial Iontronic Multisensory Sensor with An Array of Unique “Cup-Shaped” Microcolumns for Detecting Pressure and Temperature. Nano Energy 2023, 105, 108012. [Google Scholar] [CrossRef]
- Yang, X.; Dai, D.; Li, J.; Luo, M.; Shu, K.; Zheng, K.; Yu, J.; Huang, Y.; Chen, X. One-Step Process of Wrinkle Microstructured Iontronic Pressure Sensor with All Fabric Wearable Electrode. Chem. Eng. J. 2024, 496, 153780. [Google Scholar] [CrossRef]
- Wang, X.; Zi, J.; Chen, Y.; Wu, Q.; Xiang, Z.; Tu, Y.; Yang, P.; Wan, Y. Multistage Microstructured Ionic Skin for Real-Time Vital Signs Monitoring and Human-Machine Interaction. Energy Environ. Mater. 2024, 7, e12767. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, M.; Hong, S.; Shi, J.; Xie, S.; Liu, C.; Du, H.; Morin, J.D.; Li, G.; Wang, L.; et al. Data- Driven Inverse Design of Flexible Pressure Sensors. Proc. Natl. Acad. Sci. USA 2024, 121, e2320222121. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cheng, J.; He, Y.; He, X.; Xu, Z.; Ge, Q.; Yang, C. Polyelectrolyte Elastomer-Based Ionotronic Sensors with Multi-Mode Sensing Capabilities Via Multi-Material 3d Printing. Nat. Commun. 2023, 14, 4853. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Zou, Q.; Li, Y.; Chen, Y.; Teng, S.-Y.; Kelleher, J.T.; Nith, R.; Cheng, P.; Li, N.; Liu, W.; et al. A Stretchable and Strain-Unperturbed Pressure Sensor for Motion Interference-Free Tactile Monitoring on Skins. Sci. Adv. 2021, 7, eabi4563. [Google Scholar] [CrossRef]
- Fan, L.; Yang, X.; Sun, H. Pressure Sensors Combining Porous Electrodes and Electrospun Nanofiber-Based Ionic Membranes. ACS Appl. Nano Mater. 2023, 6, 3560–3571. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Wang, Y.; Huang, W.; Zhao, X.; Chen, K.; Luo, F.; Qin, Y. Fabrication Method and Various Application Scenarios of Flexible Capacitive Pressure Sensor Based on Direct Formation of Conical Structure. Chem. Eng. J. 2024, 496, 153957. [Google Scholar] [CrossRef]
- Hwang, H.J.; Kim, J.S.; Kim, W.; Park, H.; Bhatia, D.; Jee, E.; Chung, Y.S.; Kim, D.H.; Choi, D. An Ultra-Mechanosensitive Visco-Poroelastic Polymer Ion Pump for Continuous Self-Powering Kinematic Triboelectric Nanogenerators. Adv. Energy Mater. 2019, 9, 1803786. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, L.; Chen, J.; Chang, X.; Zhu, Y. Flexible and Transparent Pressure/Temperature Sensors Based on Ionogels with Bioinspired Interlocked Microstructures. ACS Appl. Mater. Interfaces 2022, 14, 2122–2131. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, L.; Li, R.; Zhang, Z.; Wang, Q.; Yang, J.; Guo, C.F.; Pan, T. First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins. Adv. Mater. 2021, 33, 2003464. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Liu, N.; Zhang, Q.; Yin, J.; Jia, P.; Lu, W.; Yao, Q.; Deng, M.; Gao, Y. Ionic Flexible Mechanical Sensors: Mechanisms, Structural Engineering, Applications, and Challenges. Adv. Sens. Res. 2023, 2, 2200099. [Google Scholar] [CrossRef]
- Garnett, J. Colours in Metal Glasses, in Metallic Films, and in Metallic Solutions.—II. Philos. Trans. R. Soc. Ser. A Contain. Pap. A Math. Phys. Character 1906, 205, 237–288. [Google Scholar]
- Ham, C.-H.; Youn, H.J.; Lee, H.L. Influence of Fiber Composition and Drying Conditions on The Bending Stiffness of Paper. Bioresources 2020, 15, 9197–9211. [Google Scholar] [CrossRef]
- Lin, Q.; Huang, J.; Yang, J.; Huang, Y.; Zhang, Y.; Wang, Y.; Zhang, J.; Wang, Y.; Yuan, L.; Cai, M.; et al. Highly Sensitive Flexible Iontronic Pressure Sensor for Fingertip Pulse Monitoring. Adv. Healthc. Mater. 2020, 9, 2001023. [Google Scholar] [CrossRef]
- Wei, Q.; Chen, G.; Pan, H.; Ye, Z.; Au, C.; Chen, C.; Zhao, X.; Zhou, Y.; Xiao, X.; Tai, H.; et al. Mxene-Sponge Based High-Performance Piezoresistive Sensor for Wearable Biomonitoring and Real-Time Tactile Sensing. Small Methods 2022, 6, 2101051. [Google Scholar] [CrossRef]
- Xu, M.X.; Dou, C.; Song, T.Y.; Li, X.; Zhang, Q. A Temperature-Insensitive Silver Nanostructures@Graphene Foam for High Accuracy and Full Range Human Health Monitoring. Rare Met. 2024, 43, 5953–5963. [Google Scholar] [CrossRef]
- You, J.; Lu, M.Y.; Dazhen, L.; Gao, M.J.; Zhang, R.Y.; Li, W.D.; Lei, F.; Ren, W.; Li, G.X.; Yang, J.L. Anti-Motion Artifacts Iontronic Sensor for Long-Term Accurate Fingertip Pulse Monitoring. Adv. Sci. 2025, 12, 2414425. [Google Scholar] [CrossRef]
- Kato, Y.; Fukuda, K.; Someya, T.; Yokota, T. An Ultra-Flexible Temperature-Insensitive Strain Sensor. J. Mater. Chem. C 2023, 11, 14070–14078. [Google Scholar] [CrossRef]
- Luo, H.Y.; Pang, G.Y.; Xu, K.C.; Ye, Z.Q.; Yang, H.Y.; Yang, G. A Fully Printed Flexible Sensor Sheet for Simultaneous Proximity-Pressure-Temperature Detection. Adv. Mater. Technol. 2024, 6, 2100616. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Li, B.Q.; Wang, M.K.; Pang, G.Y.; Lu, Y.Y.; Li, J.Y.; Yang, H.Y.; Lyu, H.; Xu, K.C.; Yang, G. Machine Learning-Enhanced Modular Ionic Skin for Broad-Spectrum Multimodal Discriminability in Bidirectional Human-Robot Interaction. Adv. Mater. 2025, 37, e08795. [Google Scholar] [CrossRef]
- Kong, D.P.; Lu, Y.Y.; Zhou, S.Y.; Wang, M.K.; Pang, G.Y.; Wang, B.C.; Chen, L.P.; Huang, X.Y.; Lyu, H.; Xu, K.C.; et al. Super-Resolution Tactile Sensor Arrays with Sparse Units Enabled by Deep Learning. Sci. Adv. 2025, 11, eadv2124. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, J.; Lou, Y.Y.; Ding, S.S.; Jin, X.; Liu, F.; Xu, Z.J.; Ma, J.Y.; Sun, Z.M.; Li, X.Y. Halloysite Nanotubes Strengthened Electrospinning Composite Nanofiber Membrane for On-Skin Flexible Pressure Sensor with High Sensitivity, Good Breathability, and Round-The-Clock Antibacterial Activity. Appl. Clay Sci. 2022, 228, 106650. [Google Scholar] [CrossRef]
- Cui, X.H.; Chen, J.W.; Wu, W.; Liu, Y.; Li, H.D.; Xu, Z.G.; Zhu, Y.T. Flexible and Breathable All-Nanofiber Iontronic Pressure Sensors with Ultraviolet Shielding and Antibacterial Performances for Wearable Electronics. Nano Energy 2022, 95, 107022. [Google Scholar] [CrossRef]
- AdigÜZel, S.P.; Ercan, N. Development Of PVDF-HFP Based Flexible Hybrid Iontronic Film for Wearable Capacitive Sensor And E-Skin Applications. Adv. Mater. Technol. 2025, 10, 70051. [Google Scholar] [CrossRef]
- Zhang, X.H.; Lu, Q.X.; Zhou, L.; Zhang, W.; Zhang, X.H.; Hu, F.R. Flexible Wearable Iontronic Pressure Sensors Based on An Array of Semiellipsoids with Micropillars for Health and Motion Monitoring. ACS Appl. Electron. Mater. 2025, 7, 1820–1828. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.L.; Hou, X.Y.; Li, G.; Wang, L.; Bai, N.N.; Cai, M.K.; Zhao, L.Y.; Wang, Y.; Zhang, J.M.; et al. Highly Stable Flexible Pressure Sensors with A Quasi-Homogeneous Composition and Interlinked Interfaces. Nat. Commun. 2022, 13, 1317. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhao, L.Y.; Cai, M.K.; Zhu, J.Q.; Wang, L.; Chen, X.X.; Zeng, Y.M.; Zhang, L.Q.; Shi, J.D.; Guo, C.F. Arteriosclerosis Assessment Based on Single-Point Fingertip Pulse Monitoring Using a Wearable Iontronic Sensor. Adv. Healthc. Mater. 2023, 12, 2301838. [Google Scholar] [CrossRef]
- Cetin, O.; Cicek, M.O.; Cugunlular, M.; Bolukbasi, T.; Khan, Y.; Unalan, H.E. Mxene-Deposited Melamine Foam-Based Iontronic Pressure Sensors for Wearable Electronics and Smart Numpads. Small 2024, 20, 2403202. [Google Scholar] [CrossRef]
- Liu, Q.X.; Liu, Z.G.; Li, C.G.; Xie, K.W.; Zhu, P.; Shao, B.Q.; Zhang, J.M.; Yang, J.L.; Zhang, J.; Wang, Q.; et al. Highly Transparent and Flexible Iontronic Pressure Sensors Based on An Opaque to Transparent Transition. Adv. Sci. 2020, 7, 2000348. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Xu, J.; Yang, S.; Xu, Y.; Wang, J.; Liu, X.; Wang, L.; Ding, Y. Impact of Microstructure on Sensing Performance of Fiber-Based Iontronic Pressure Sensors: A Comparative Study. Sensors 2025, 25, 6711. https://doi.org/10.3390/s25216711
Liu C, Xu J, Yang S, Xu Y, Wang J, Liu X, Wang L, Ding Y. Impact of Microstructure on Sensing Performance of Fiber-Based Iontronic Pressure Sensors: A Comparative Study. Sensors. 2025; 25(21):6711. https://doi.org/10.3390/s25216711
Chicago/Turabian StyleLiu, Cheng, Jiaxin Xu, Shiman Yang, Yihan Xu, Jianyu Wang, Xiaoqing Liu, Li Wang, and Yichun Ding. 2025. "Impact of Microstructure on Sensing Performance of Fiber-Based Iontronic Pressure Sensors: A Comparative Study" Sensors 25, no. 21: 6711. https://doi.org/10.3390/s25216711
APA StyleLiu, C., Xu, J., Yang, S., Xu, Y., Wang, J., Liu, X., Wang, L., & Ding, Y. (2025). Impact of Microstructure on Sensing Performance of Fiber-Based Iontronic Pressure Sensors: A Comparative Study. Sensors, 25(21), 6711. https://doi.org/10.3390/s25216711

