Research on Driver Fatigue Detection in Real Driving Environments Based on Semi-Dry Electrodes with Automatic Conductive Fluid Replenishment
Abstract
1. Introduction
2. Materials and Methods
2.1. The Production of Semi-Dry Electrode with Automatic Electrolyte Replenishment
2.1.1. Structural Design
2.1.2. Manufacturing of Electrodes
2.1.3. Impedance Test of Electrode
2.1.4. Electrode Life Test
2.2. Experiment
2.2.1. Subjects
2.2.2. Experimental Paradigm
2.3. Methods
Deep Domain Confusion (DDC)
3. Results
3.1. Electrode Properties
3.1.1. Contact Impedance of Electrodes
3.1.2. Service Life of Electrodes
3.2. Performance Analysis of Migration Models
3.2.1. Model Parameter Selection
3.2.2. Comparative Analysis of Model Performance in Simulated Driving Environments
3.2.3. Comparative Analysis of Model Performance in Real Driving Environments
4. Discussion
4.1. Semi-Dry Electrode with Automatic Electrolyte Replenishment
4.2. Fatigue Detection Method
4.3. Limitations and Future Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| EEG | electroencephalography |
| MF-DFA | multifractal detrended fluctuation analysis |
| BPNN | backpropagation neural network |
| RF | random forest |
| CNN | convolutional neural network |
| SVM | support vector machine |
| GADF-CNN | gauss-annex-difference field-convolutional neural network |
| KSS | Karolinska sleepiness scale |
| DDC | deep domain confusion |
| MMD | maximum mean discrepancy |
| MATL-DC | multi-domain aggregation transfer learning with domain-class prototype |
| TDDPL | transfer discriminative dictionary pair learning |
| RKHS | reproducing kernel hilbert space |
References
- Li, D.; Zhang, X.; Liu, X.; Wang, Y. Driver fatigue detection based on comprehensive facial features and gated recurrent unit. J. Real-Time Image Process. 2023, 20, 19. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.E.; Li, R.; Wang, H. Online detection of driver fatigue using steering wheel angles for real driving conditions. Sensors 2017, 17, 495. [Google Scholar] [CrossRef]
- Xu, J.; Min, J.; Hu, J. Real-time eye tracking for the assessment of driver fatigue. Healthc. Technol. Lett. 2018, 5, 54–58. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Zhou, X.; Li, Q. A driving fatigue feature detection method based on multifractal theory. IEEE Sens. J. 2022, 22, 19046–19059. [Google Scholar] [CrossRef]
- Qin, Y.; Hu, Z.; Chen, Y.; Sun, L. Directed brain network analysis for fatigue driving based on EEG source signals. Entropy 2022, 24, 1093. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yao, W.; Lu, B.; Chen, D. ECG-based real-time drivers’ fatigue detection using a novel elastic dry electrode. IEEE Trans. Instrum. Meas. 2023, 73, 9502916. [Google Scholar] [CrossRef]
- Wang, F.; Chen, D.; Lu, B.; Zhang, X. A novel semi-dry electrode suitable for collecting EEG data for detecting driving fatigue in long-period driving case. IEEE Sens. J. 2023, 23, 17891–17900. [Google Scholar] [CrossRef]
- Liu, J.; Lin, S.; Li, W.; Zhao, Y.; Liu, D.; He, Z.; Wang, D.; Lei, M.; Hong, B.; Wu, H. Ten-Hour Stable Noninvasive Brain–Computer Interface Realized by Semidry Hydrogel-Based Electrodes. Research 2022, 2022, 9830457. [Google Scholar] [CrossRef]
- Zhu, Y.; Bayin, C.; Li, H.; Shu, X.; Deng, J.; Yuan, H.; Shen, H.; Liang, Z.; Li, Y. A Flexible, Stable, Semi-Dry Electrode with Low Impedance for Electroencephalography Recording. RSC Adv. 2024, 14, 34415–34427. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Gu, T.; Fu, R.; Wang, F. A Novel Pull-out Semi-Dry Electrode with Rapid Conductive Liquid Replenishment for EEG Acquisition in Real Driving Environment. Sens. Actuators A Phys. 2025, 391, 116671. [Google Scholar] [CrossRef]
- Wang, F.; Chen, D.; Fu, R.; Zhang, X. Study on a Novel Flow-Controllable Semi-Dry Electrode for EEG Signal Acquisition. IEEE Sens. J. 2024, 24, 38646–38657. [Google Scholar] [CrossRef]
- Li, G.; Zhang, D.; Wang, S.; Duan, Y.Y. Novel Passive Ceramic-Based Semi-Dry Electrodes for Recording Electroencephalography Signals from the Hairy Scalp. Sens. Actuators B Chem. 2016, 237, 167–178. [Google Scholar] [CrossRef]
- Chen, J.; Yan, M.; Zhu, F.; Liu, P. Fatigue driving detection method based on combination of BP neural network and time cumulative effect. Sensors 2022, 22, 4717. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, H.; Zhang, W.; Li, J. An improved random forest algorithm-based fatigue recognition with multiphysical feature. IEEE Sens. J. 2023, 23, 26195–26201. [Google Scholar] [CrossRef]
- Wang, F.; Ma, M.; Zhang, X. Study on a portable electrode used to detect the fatigue of tower crane drivers in real construction environment. IEEE Trans. Instrum. Meas. 2024, 73, 2506914. [Google Scholar] [CrossRef]
- You, Z.; Gao, Y.; Zhang, J.; Liu, H. A study on driver fatigue recognition based on SVM method. In Proceedings of the 2017 4th International Conference on Transportation Information and Safety (ICTIS), Banff, AB, Canada, 8–10 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 693–697. [Google Scholar]
- Vafaei, E.; Hosseini, M. Transformers in EEG Analysis: A Review of Architectures and Applications in Motor Imagery, Seizure, and Emotion Classification. Sensors 2025, 25, 1293. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, C.; Li, T.; He, Y.; Chen, P.; Bezerianos, A. Driving Fatigue Classification Based on Fusion Entropy Analysis Combining EOG and EEG. IEEE Access 2019, 7, 61975–61986. [Google Scholar] [CrossRef]
- Shahbakhti, M.; Beiramvand, M.; Nasiri, E.; Far, S.M.; Chen, W.; Solé-Casals, J.; Wierzchon, M.; Broniec-Wójcik, A.; Augustyniak, P.; Marozas, V. Fusion of EEG and Eye Blink Analysis for Detection of Driver Fatigue. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 2037–2046. [Google Scholar] [CrossRef]
- Houshmand, S.; Kazemi, R.; Salmanzadeh, H. An Efficient Approach for Driver Drowsiness Detection at Moderate Drowsiness Level Based on Electroencephalography Signal and Vehicle Dynamics Data. J. Med. Signals Sens. 2022, 12, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Åkerstedt, T.; Gillberg, M. Subjective and Objective Sleepiness in the Active Individual. Int. J. Neurosci. 1990, 52, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wu, C.; Zhou, Z.; Tian, N.; Liang, Z. MATL-DC: A Multi-Domain Aggregation Transfer Learning Framework for EEG Emotion Recognition with Domain-Class Prototype Under Unseen Targets. arXiv 2025, arXiv:2509.01135. [Google Scholar]
- Ruan, Y.; Du, M.; Ni, T. Transfer Discriminative Dictionary Pair Learning Approach for Across-Subject EEG Emotion Classi-fication. Front. Psychol. 2022, 13, 899983. [Google Scholar] [CrossRef]
- Prema, P.; Kesavamurthy, T.; Ramadoss, K. Performance Analysis of Wavelet Basis Function in De-Trending and Ocular Artefact Removal from Electroencephalogram. Int. J. Biomed. Eng. Technol. 2019, 30, 263–276. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2000, 101, e215. [Google Scholar] [CrossRef]
- Mousavi, S.; Afghah, F.; Acharya, U.R. SleepEEGNet: Automated Sleep Stage Scoring with Sequence-to-Sequence Deep Learning Approach. PLoS ONE 2019, 14, e0216456. [Google Scholar] [CrossRef]
- Kemp, B.; Zwinderman, A.; Tuk, B.; Kamphuisen, H.; Oberye, J. Analysis of a Sleep-Dependent Neuronal Feedback Loop: The Slow-Wave Mi-crocontinuity of the EEG. IEEE Trans. Biomed. Eng. 2000, 47, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Brooks, R.; Gamaldo, C.; Harding, S.M.; Lloyd, R.M.; Quan, S.F.; Troester, M.T.; Vaughn, B.V. AASM Scoring Manual Updates for 2017 (Version 2.4). J. Clin. Sleep Med. 2017, 13, 665–666. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Lin, Y.; Wang, J.; Wang, X.; Xie, P.; Zhang, Y. SalientSleepNet: Multimodal Salient Wave Detection Network for Sleep Staging. arXiv 2021, arXiv:2105.13864. [Google Scholar]
- Supratak, A.; Dong, H.; Wu, C.; Guo, Y. DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1998–2008. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gu, T.; Yao, W. Research on the application of the Sleep EEG Net model based on domain adaptation transfer in the detection of driving fatigue. Biomed. Signal Process. Control 2024, 90, 105832. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Fu, R.; Sun, G. Study of the home-auxiliary robot based on BCI. Sensors 2018, 18, 1779. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Luo, A.; Chen, D. Real-time EEG-based detection of driving fatigue using a novel semi-dry electrode with self-replenishment of conductive fluid. Comput. Methods Biomech. Biomed. Eng. 2024, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Ma, M.; Fu, R. EEG-based detection of driving fatigue using a novel electrode. Sens. Actuators A Phys. 2024, 365, 114895. [Google Scholar] [CrossRef]
- Fatoorechi, M. A comparative study of electrical potential sensors and Ag/AgCl electrodes for characterising spontaneous and event related electroencephalagram signals. J. Neurosci. Methods 2015, 251, 7–16. [Google Scholar] [CrossRef]
- Liao, L.D.; Wang, I.J.; Chen, S.F. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Sensors 2011, 11, 5819–5834. [Google Scholar] [CrossRef]
- Bao, G.; Zhuang, N.; Tong, L.; Chen, M. Two-level domain adaptation neural network for EEG-based emotion recognition. Front. Hum. Neurosci. 2021, 14, 605246. [Google Scholar] [CrossRef]




















| Layers | Small Filter | Large Filter | Activate | ||||
|---|---|---|---|---|---|---|---|
| Window Size | Kernel Size | Stride | Window Size | Kernel Size | Stride | ||
| Conv1d | 50 × 1 × 64 | 6 | 400 × 1 × 64 | 50 | ReLU | ||
| Maxpool | 8 | 8 | 4 | 4 | |||
| Conv1d | 8 × 1 × 128 | 1 | 6 × 1 × 128 | ReLU | |||
| Conv1d | 8 × 1 × 128 | 1 | 6 × 1 × 128 | ReLU | |||
| Conv1d | 8 × 1 × 128 | 1 | 6 × 1 × 128 | ReLU | |||
| Maxpool | 4 | 4 | 2 | 2 | |||
| Module | Layer Type | Parameters |
|---|---|---|
| Embedding | Dense lookup | embed_size = 10 |
| Encoder | BiLSTM × 2 | units = 128 |
| Attention | Luong | attention_size = 64 |
| Decoder | LSTM × 2 | units = 128 |
| Output Layer | Dense | 5classes → 3classes |
| Loss | Sequence_loss + MMD + L2 | kernel_num = 5, kernel_width = 2, β = 0.001 |
| Optimizer | RMSProp | lr = 0.001 |
| Dataset | W | N1 | N2 | N3 | REM | Total |
|---|---|---|---|---|---|---|
| Sleep-EDF-13 | 8285 | 2804 | 17,799 | 5703 | 7717 | 42,308 |
| Sleep-EDF-18 | 65,951 | 21,522 | 96,132 | 13,039 | 25,835 | 222,479 |
| Accuracy | Precision | Specificity | Recall | F1 | |
|---|---|---|---|---|---|
| Fold 1 | 0.9148 | 0.8778 | 0.9256 | 0.9042 | 0.8685 |
| Fold 2 | 0.9039 | 0.8524 | 0.9547 | 0.8793 | 0.8568 |
| Fold 3 | 0.9027 | 0.8623 | 0.8552 | 0.8921 | 0.8501 |
| Fold 4 | 0.8793 | 0.8401 | 0.8467 | 0.9072 | 0.8331 |
| Fold 5 | 0.8792 | 0.8547 | 0.8994 | 0.9018 | 0.8278 |
| Mean | 0.8877 | 0.8561 | 0.8943 | 0.8983 | 0.8488 |
| Variance | 0.0003 | 0.0004 | 0.0012 | 0.0002 | 0.0004 |
| Prediction Label | Performance Metric (%) | |||||
|---|---|---|---|---|---|---|
| Awake | Mild Fatigue | Severe Fatigue | Precision | Recall | ||
| EEGNet-FT | Awake | 1768 | 892 | 421 | 59.9 | 57.4 |
| Mild Fatigue | 593 | 962 | 658 | 37.4 | 43.5 | |
| Severe Fatigue | 591 | 717 | 2002 | 65.0 | 60.5 | |
| EEGNet-MMD | Awake | 2014 | 641 | 430 | 75.9 | 65.3 |
| Mild Fatigue | 354 | 1361 | 510 | 49.6 | 61.2 | |
| Severe Fatigue | 285 | 741 | 2269 | 70.7 | 68.9 | |
| Deep Sleep Net-FT | Awake | 2017 | 621 | 662 | 71.0 | 61.1 |
| Mild Fatigue | 431 | 1372 | 421 | 53.6 | 61.7 | |
| Severe Fatigue | 394 | 568 | 2341 | 68.4 | 70.9 | |
| Deep Sleep Net-MMD | Awake | 2335 | 519 | 417 | 87.1 | 71.4 |
| Mild Fatigue | 205 | 1901 | 124 | 70.8 | 85.2 | |
| Severe Fatigue | 141 | 266 | 2890 | 84.2 | 87.7 | |
| Sleep EEG Net-FT | Awake | 2271 | 434 | 380 | 80.8 | 73.6 |
| Mild Fatigue | 198 | 1852 | 174 | 74.3 | 83.3 | |
| Severe Fatigue | 341 | 205 | 2757 | 83.3 | 83.5 | |
| Sleep EEG Net-MMD | Awake | 2685 | 211 | 187 | 88.8 | 87.1 |
| Mild Fatigue | 175 | 1952 | 91 | 83.9 | 88.0 | |
| Severe Fatigue | 162 | 163 | 2970 | 91.4 | 90.1 | |
| Prediction Label | Performance Metric (%) | |||||
|---|---|---|---|---|---|---|
| Awake | Mild Fatigue | Severe Fatigue | Precision | Recall | ||
| EEGNet-FT | Awake | 851 | 654 | 471 | 56.3 | 43.1 |
| Mild Fatigue | 366 | 422 | 285 | 31.2 | 39.3 | |
| Severe Fatigue | 294 | 276 | 706 | 48.3 | 55.3 | |
| EEGNet-MMD | Awake | 908 | 647 | 425 | 61.9 | 45.9 |
| Mild Fatigue | 401 | 491 | 175 | 33.2 | 46.0 | |
| Severe Fatigue | 158 | 340 | 787 | 56.7 | 61.2 | |
| Deep Sleep Net-FT | Awake | 1008 | 658 | 313 | 64.9 | 50.9 |
| Mild Fatigue | 402 | 519 | 144 | 35.1 | 48.7 | |
| Severe Fatigue | 142 | 303 | 825 | 64.4 | 65.0 | |
| Deep Sleep Net-MMD | Awake | 1241 | 491 | 251 | 67.2 | 62.6 |
| Mild Fatigue | 413 | 547 | 112 | 44.6 | 51.0 | |
| Severe Fatigue | 192 | 189 | 897 | 71.2 | 70.2 | |
| Sleep EEG Net-FT | Awake | 1448 | 401 | 132 | 74.4 | 73.1 |
| Mild Fatigue | 324 | 602 | 143 | 50.2 | 56.3 | |
| Severe Fatigue | 173 | 197 | 902 | 76.6 | 70.9 | |
| Sleep EEG Net-MMD | Awake | 1725 | 142 | 103 | 87.3 | 87.6 |
| Mild Fatigue | 198 | 767 | 99 | 77.1 | 72.1 | |
| Severe Fatigue | 53 | 86 | 1141 | 85.0 | 89.1 | |
| Type of Electrodes | Impedance Value (at 10 Hz) | Signal-to-Noise Ratio (dB) | Time Available for Continuous Use | Comfort Rating | Whether the Conductive Fluid Can be Automatically Replenished |
|---|---|---|---|---|---|
| Emotiv wet electrode [34] | 7.02 kΩ | 12.86 | 2 h | 5.45 | No |
| Ag/AgCl wet electrode [35] | 6.88 kΩ | 13.37 | 2 h | 5.89 | No |
| Dry contact electrode [36] | 15.68 kΩ | ||||
| Ceramic semi-dry electrode [12] | 9.89 kΩ | 10 h | No | ||
| Flexible multi-layer semi-dry electrode [15] | 9.46 kΩ | 5 h | No | ||
| Portable semi-dry electrode [37] | 11.23 kΩ | 11.13 | 7 h | 5.14 | No |
| Novel electrode (This study) | 8.35 kΩ | 12.28 | 16 h | 5.42 | Yes |
| Dataset | Task Type | SVM (Mean ± Std) | MMD (Mean ± Std) |
|---|---|---|---|
| Self-built Dataset Cross-day [15] | Two classifications | 0.7002 ± 0.159 | 0.7997 ± 0.153 |
| SEED Cross-day [15] | Four classifications | 0.5884 ± 0.1142 | 0.6817 ± 0.1350 |
| Self-built Dataset Cross-subject [15] | Two classifications | 0.6726 ± 0.147 | 0.7837 ± 0.151 |
| SEED Cross-subject [15] | Four classifications | 0.5818 ± 0.1385 | 0.6655 ± 0.0483 |
| This Study’s Dataset | Two classifications | 0.6925 ± 0.128 | 0.8032 ± 0.144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Zhang, Y.; Song, W.; Zhang, X. Research on Driver Fatigue Detection in Real Driving Environments Based on Semi-Dry Electrodes with Automatic Conductive Fluid Replenishment. Sensors 2025, 25, 6687. https://doi.org/10.3390/s25216687
Wang F, Zhang Y, Song W, Zhang X. Research on Driver Fatigue Detection in Real Driving Environments Based on Semi-Dry Electrodes with Automatic Conductive Fluid Replenishment. Sensors. 2025; 25(21):6687. https://doi.org/10.3390/s25216687
Chicago/Turabian StyleWang, Fuwang, Yuanhao Zhang, Weijie Song, and Xiaolei Zhang. 2025. "Research on Driver Fatigue Detection in Real Driving Environments Based on Semi-Dry Electrodes with Automatic Conductive Fluid Replenishment" Sensors 25, no. 21: 6687. https://doi.org/10.3390/s25216687
APA StyleWang, F., Zhang, Y., Song, W., & Zhang, X. (2025). Research on Driver Fatigue Detection in Real Driving Environments Based on Semi-Dry Electrodes with Automatic Conductive Fluid Replenishment. Sensors, 25(21), 6687. https://doi.org/10.3390/s25216687

