Can Sled-Resisted Priming Training Enhance Performance in Amateur Football Players?
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PAP | Post-activation potentiation |
| PAPE | Post-activation performance enhancement |
| CMJ | Countermovement jump |
| MD | Match day |
| MD-1 | Day before the match |
| F | Relative force (N/kg) |
| P | Relative power (W/kg) |
| Vmax | Maximal speed (m/s) |
| F0 | Theoretical maximal force (N/kg) (ordinate axis intercept (y) in F-V linear regression) |
| V0 | Theoretical maximal velocity (m/s) (abscissa axis intercept (x) in F-V linear regression) |
| Pmax | Maximal power (W/kg) |
| RFmax | Ratio of maximal force (%) |
| DRF | Ability to maintain net horizontal force production despite increasing running speed (%) |
References
- Castellano, J.; Casamichana, D. El Arte de Planificar en Fútbol; Fútbol de Libro: Buenos Aires, Argentina, 2016. [Google Scholar]
- Lago-Penas, C.; Lorenzo-Martinez, M.; Lopez-Del Campo, R.; Resta, R.; Rey, E. Evolution of physical and technical parameters in the Spanish LaLiga 2012–2019. Sci. Med. Footb. 2023, 7, 41–46. [Google Scholar] [CrossRef]
- Morgans, R.; Ceylan, I.H.; Radnor, J.; Ryan, B.; King, M.; Zmijewski, P.; Oliveira, R. Positional training demands in the English Premier League and English Championship. A longitudinal study across consecutive seasons. Biol. Sport 2024, 42, 21–28. [Google Scholar] [CrossRef]
- Allen, T.; Taberner, M.; Zhilkin, M.; Rhodes, D. Running more than before? The evolution of running load demands in the English Premier League. Int. J. Sports Sci. Coach. 2024, 19, 779–787. [Google Scholar] [CrossRef]
- Harrison, P.W.; James, L.P.; McGuigan, M.R.; Jenkins, D.G.; Kelly, V.G. Resistance priming to enhance neuromuscular performance in sport: Evidence, potential mechanisms and directions for future research. Sports Med. 2019, 49, 1499–1514. [Google Scholar] [CrossRef] [PubMed]
- Blazevich, A.J.; Babault, N. Post-activation potentiation versus post-activation performance enhancement in humans: Historical perspective, underlying mechanisms, and current issues. Front. Physiol. 2019, 10, 1359. [Google Scholar] [CrossRef] [PubMed]
- Tsoukos, A.; Veligekas, P.; Brown, L.E.; Terzis, G.; Bogdanis, G.C. Delayed effects of a low-volume, power-type resistance exercise session on explosive performance. J. Strength Cond. Res. 2018, 32, 643–650. [Google Scholar] [CrossRef]
- Cook, C.J.; Kilduff, L.P.; Crewther, B.T.; Beaven, M.; West, D.J. Morning based strength training improves afternoon physical performance in rugby union players. J. Sci. Med. Sport 2014, 17, 317–321. [Google Scholar] [CrossRef]
- Benítez Jiménez, A.; Falces Prieto, M.; García Ramos, A. Rendimiento del salto tras varios partidos de fútbol disputados en días consecutivos. Int. J. Med. Sci. Phys. Act. Sport 2020, 20, 185–196. [Google Scholar] [CrossRef]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef]
- Asimakidis, N.D.; Mukandi, I.N.; Beato, M.; Bishop, C.; Turner, A.N. Assessment of strength and power capacities in elite male soccer: A systematic review of test protocols used in practice and research. Sports Med. 2024, 54, 2607–2644. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Garcia-Ramos, A.; Párraga-Montilla, J.A.; Morcillo-Losa, J.A.; Cuadrado-Peñafiel, V.; Castaño-Zambudio, A.; Samozino, P.; Morin, J.-B. Seasonal changes in the sprint acceleration force-velocity profile of elite male soccer players. J. Strength Cond. Res. 2022, 36, 70–74. [Google Scholar] [CrossRef]
- Alonso-Callejo, A.; García-Unanue, J.; Perez-Guerra, A.; Gomez, D.; Sánchez-Sánchez, J.; Gallardo, L.; Oliva-Lozano, J.M.; Felipe, J.L. Effect of playing position and microcycle days on the acceleration speed profile of elite football players. Sci. Rep. 2022, 12, 19266. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.-B.; Le Mat, Y.; Osgnach, C.; Barnabò, A.; Pilati, A.; Samozino, P.; di Prampero, P.E. Individual acceleration-speed profile in-situ: A proof of concept in professional football players. J. Biomech. 2021, 123, 110524. [Google Scholar] [CrossRef] [PubMed]
- Donghi, F.; Rampinini, E.; Bosio, A.; Fanchini, M.; Carlomagno, D.; Maffiuletti, N.A. Morning priming exercise strategy to enhance afternoon performance in young elite soccer players. Int. J. Sports Physiol. Perform. 2021, 16, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Panteli, N.; Hadjicharalambous, M.; Zaras, N. Delayed potentiation effect on sprint, power and agility performance in well-trained soccer players. J. Sci. Sport Exerc. 2024, 6, 131–139. [Google Scholar] [CrossRef]
- Şentürk, D.; Yüksel, O.; Akyildiz, Z. The concurrent validity and reliability of the My Jump Lab smartphone app for the real-time measurement of vertical jump performance. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2024, 239, 559–566. [Google Scholar] [CrossRef]
- Komino, P.; Le Mat, Y.; Zadro, I.; Osgnach, C.; Morin, J.-B. Sprint acceleration mechanical outputs: Direct comparison between GPEXE Pro2 and 1080 sprint devices. Sport Peformance Sci. Rep. 2022, 163, 1–4. [Google Scholar]
- Feser, E.; Lindley, K.; Clark, K.; Bezodis, N.; Korfist, C.; Cronin, J. Comparison of two measurement devices for obtaining horizontal force-velocity profile variables during sprint running. Int. J. Sports Sci. Coach. 2022, 17, 1455–1461. [Google Scholar] [CrossRef]
- Burr, J.F.; Jamnik, V.K.; Dogra, S.; Gledhill, N. Evaluation of jump protocols to assess leg power and predict hockey playing potential. J. Strength Cond. Res. 2007, 21, 1139–1145. [Google Scholar]
- Bizzini, M.; Dvorak, J. FIFA 11+: An effective programme to prevent football injuries in various player groups worldwide—A narrative review. Br. J. Sports Med. 2015, 49, 577–579. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Pino-Mulero, V.; Soriano, M.A.; Giuliano, F.; González-García, J. Effects of a priming session with heavy sled pushes on neuromuscular performance and perceived recovery in soccer players: A crossover design study during competitive microcycles. Biol. Sport 2024, 42, 59–66. [Google Scholar] [CrossRef]
- Guerra Jr, M.A.; Caldas, L.C.; Souza, H.L.; Tallis, J.; Duncan, M.J.; Guimarães-Ferreira, L. The effects of physical fitness on postactivation potentiation in professional soccer athletes. J. Strength Cond. Res. 2022, 36, 1643–1647. [Google Scholar] [CrossRef]
- Prieto, M.F.; González, J.R.; de Villarreal Sáez, E.S.; Palma, J.R.; García, F.J.I.; Fernández, F.T.G. Effects of combined plyometric and sled training on vertical jump and linear speed performance in young soccer players. Retos Nuevas Tend. Educ. Física Deporte Recreación 2021, 42, 228–235. [Google Scholar]
- Almiñana, N.; Da Silva, R. Aplicación de estrategias de priming para mejorar el rendimiento físico el día de partido en un equipo filial de fútbol profesional. Rev. Prep. Física Fútbol ISSN 2021, 1889, 5050. [Google Scholar]
- González-Badillo, J.J.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Ribas, J.; López-López, C.; Mora-Custodio, R.; Yañez-García, J.M.; Pareja-Blanco, F. Short-term recovery following resistance exercise leading or not to failure. Int. J. Sports Med. 2016, 37, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, R.T.; Strudwick, A.J.; Buchheit, M.; Atkinson, G.; Drust, B.; Gregson, W. Monitoring fatigue during the in-season competitive phase in elite soccer players. Int. J. Sports Physiol. Perform. 2015, 10, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Jordan, M.; Torres-Ronda, L.; Loturco, I.; Harry, J.; Virgile, A.; Mundy, P.; Turner, A.; Comfort, P. Selecting metrics that matter: Comparing the use of the countermovement jump for performance profiling, neuromuscular fatigue monitoring, and injury rehabilitation testing. Strength Cond. J. 2023, 45, 545–553. [Google Scholar] [CrossRef]
- Cormier, P.; Freitas, T.T.; Loturco, I.; Turner, A.; Virgile, A.; Haff, G.G.; Blazevich, A.J.; Agar-Newman, D.; Henneberry, M.; Baker, D.G. Within session exercise sequencing during programming for complex training: Historical perspectives, terminology, and training considerations. Sports Med. 2022, 52, 2371–2389. [Google Scholar] [CrossRef]
- Nishioka, T.; Okada, J. Influence of strength level on performance enhancement using resistance priming. J. Strength Cond. Res. 2022, 36, 37–46. [Google Scholar] [CrossRef]


| Test | Variable | Definition |
|---|---|---|
| F | Relative force (N/kg) | |
| CMJ | P | Relative power (W/kg) |
| Jump height | Maximal height (cm) reached during a jump | |
| Sprint | Time | Total 40 m sprint time (s) |
| Vmax | Maximal speed (m/s) | |
| Peak force | Greatest force (N) recorded during the concentric phase of a movement | |
| F0 | Theoretical maximal force (N/kg) (ordinate axis intercept (y) in F-V linear regression) | |
| V0 | Theoretical maximal velocity (m/s) (abscissa axis intercept (x) in F-V linear regression) | |
| Pmax | Maximal power (W/kg) | |
| RFmax | Ratio of maximal force (%) | |
| DRF * | Ability to maintain net horizontal force production despite increasing running speed (%) |
| Variables | Coefficient | Standard Error | df | t-Value | p-Value | |
|---|---|---|---|---|---|---|
| F (N/kg) | intercept | 12.84 | 0.11 | 21.06 | 119.57 | 0.001 |
| MD-1–MD = MD | 0.01 | 0.03 | 450.61 | 0.30 | 0.766 | |
| sled = yes | 0.10 | 0.04 | 434.49 | 2.44 | 0.015 * | |
| MD-1–MD = MD: sled = yes | 0.02 | 0.04 | 450.61 | 0.47 | 0.638 | |
| P (W/kg) | intercept | 15.85 | 0.30 | 19.28 | 52.57 | 0.001 |
| MD-1–MD = MD | 0.04 | 0.12 | 447.35 | 0.37 | 0.710 | |
| sled = yes | 0.24 | 0.14 | 281.30 | 1.74 | 0.082 | |
| MD-1–MD = MD: sled = yes | 0.07 | 0.15 | 447.35 | 0.50 | 0.617 | |
| Jump height (cm) | intercept | 31.30 | 0.75 | 19.97 | 41.94 | 0.001 |
| MD-1–MD = MD | 0.13 | 0.32 | 442.77 | 0.41 | 0.681 | |
| sled = yes | 0.45 | 0.35 | 199.84 | 1.30 | 0.196 | |
| MD-1–MD = MD: sled = yes | 0.19 | 0.39 | 442.77 | 0.49 | 0.627 | |
| Variables | PRE | POST | PRE–POST | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | SD | Mean | SD | MD | 95% CI | p | ES | ||
| Inf | Sup | ||||||||
| Time (s) | 5.73 | 0.22 | 5.75 | 0.29 | 0.01 | −0.08 | 0.11 | 0.794 | 0.05 |
| Vmax (m/s) | 8.73 | 0.44 | 8.85 | 0.48 | 0.12 | −0.1 | 0.33 | 0.270 | 0.25 |
| Peak force (N) | 48.58 | 9.23 | 50.46 | 8.82 | 1.88 | −3.25 | 7.01 | 0.443 | 0.21 |
| F0 (N/kg) | 7.98 | 0.71 | 7.67 | 0.62 | −0.31 | −0.58 | −0.05 | 0.024 * | −0.47 |
| V0 (m/s) | 9.05 | 0.38 | 9.27 | 0.48 | 0.22 | 0.03 | 0.4 | 0.023 * | 0.49 |
| Pmax (W/kg) | 18.09 | 2 | 17.78 | 1.82 | −0.31 | −0.93 | 0.32 | 0.306 | −0.16 |
| RFmax (%) | 0.53 | 0.03 | 0.52 | 0.02 | −0.01 | −0.02 | 0.00 | 0.071 | −0.34 |
| DRF (%) | −0.08 | 0.01 | −0.07 | 0.01 | 0.01 | 0.00 | 0.01 | 0.007 * | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-Sanchez, A.; Felipe, J.L.; Garcia-Unanue, J.; Gallardo, L.; Alonso-Callejo, A. Can Sled-Resisted Priming Training Enhance Performance in Amateur Football Players? Sensors 2025, 25, 6575. https://doi.org/10.3390/s25216575
Medina-Sanchez A, Felipe JL, Garcia-Unanue J, Gallardo L, Alonso-Callejo A. Can Sled-Resisted Priming Training Enhance Performance in Amateur Football Players? Sensors. 2025; 25(21):6575. https://doi.org/10.3390/s25216575
Chicago/Turabian StyleMedina-Sanchez, Alvaro, Jose Luis Felipe, Jorge Garcia-Unanue, Leonor Gallardo, and Antonio Alonso-Callejo. 2025. "Can Sled-Resisted Priming Training Enhance Performance in Amateur Football Players?" Sensors 25, no. 21: 6575. https://doi.org/10.3390/s25216575
APA StyleMedina-Sanchez, A., Felipe, J. L., Garcia-Unanue, J., Gallardo, L., & Alonso-Callejo, A. (2025). Can Sled-Resisted Priming Training Enhance Performance in Amateur Football Players? Sensors, 25(21), 6575. https://doi.org/10.3390/s25216575

