A Novel Demographic Indicator Fusion Network (DIFNet) for Dynamic Fusion of EEG and Demographic Indicators for Robust Depression Detection
Abstract
1. Introduction
- (1)
- Dynamic Weighted Fusion Mechanism: This mechanism employs an interactive fusion strategy rather than simple concatenation, allowing for more nuanced integration of demographic indicators with EEG features. This approach enhances the model’s ability to capture complex relationships between different types of data.
- (2)
- Multiscale Attention–Temporal Collaborative Architecture: This novel architecture combines a multiscale convolutional module, Transformer encoder module, and TCN module. By leveraging the strengths of each component, this architecture enables more effective feature extraction and classification, particularly in capturing long-range temporal dependencies and subtle mood-related patterns.
2. Dataset Description
2.1. Dataset
2.2. Preprocessing
3. Methods
3.1. Proposed DIFNet Algorithm
3.1.1. Multiscale Convolutional Module
3.1.2. Transformer Encoder Module
3.1.3. Temporal Convolutional Network (TCN) Module
3.1.4. Fusion Module with Demographic Indicators
3.2. Performance Evaluation
4. Results
5. Discussion
5.1. Influence of Demographic Indicators on Depression Features
5.2. Influence of Frequency Band
5.3. Ablation Study of DIFNet-AY
5.4. Comparison with State-of-the-Art Algorithms
5.5. Validation on a Reduced-Montage Dataset
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MDD | Major Depressive Disorder |
| WHO | World Health Organization |
| EEG | Electroencephalographic |
| LSTM | Long Short-Term Memory |
| GCN | Graph Convolution Network |
| GRUs | Gated Recurrent Units |
| BatchNorm | Batch Normalization |
| ELU | Exponential Linear Unit |
| DE | Differential Entropy |
| TCN | Temporal Convolutional Network |
References
- Le, G.H.; Wong, S.; Lu, A.; Vasudeva, S.; Gill, H.; Badulescu, S.; Portelles, D.R.; Zheng, Y.J.; Teopiz, K.M.; Meshkat, S.; et al. Electroencephalography (EEG) spectral signatures of selective serotonin reuptake inhibitors (SSRIs), selective norepinephrine reuptake inhibitors (SNRIs) and vortioxetine in major depressive disorder: A systematic review. J. Affect. Disord. 2025, 368, 798–819. [Google Scholar] [CrossRef]
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Greenberg, P.E.; Fournier, A.-A.; Sisitsky, T.; Pike, C.T.; Kessler, R.C. The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J. Clin. Psychiatry 2015, 76, 5356. [Google Scholar] [CrossRef]
- Chen, X.; Pan, Z. A convenient and low-cost model of depression screening and early warning based on voice data using for public mental health. Int. J. Environ. Res. Public Health 2021, 18, 6441. [Google Scholar] [CrossRef]
- Rehman, H.; Khan, D.M.; Amanullah, H.; Kamran, L.; Rehman, O.U.; Siddiqui, S.T.; Masroor, K. Advances in EEG-based detection of Major Depressive Disorder using shallow and deep learning techniques: A systematic review. Comput. Biol. Med. 2025, 192 Pt A, 110154. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, J.; Wang, X.; Zhang, Q.; Li, Z.; Liang, Z. Discriminating brainwave patterns of different control and non-control states for enhancing asynchronous brain-computer interfaces. Expert Syst. Appl. 2024, 252, 124145. [Google Scholar] [CrossRef]
- Li, C.; Li, H.; Dong, X.; Zhong, X.; Cui, H.; Ji, D.; He, L.; Liu, G.; Zhou, W. CNN-Informer: A hybrid deep learning model for seizure detection on long-term EEG. Neural Netw. 2025, 181, 106855. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Han, J.; Chen, Y.; Sha, X.; Wang, Z.; Hu, B.; Yang, J.; Feng, L.; Ding, Z.; Chen, Y.; et al. A pervasive approach to EEG-based depression detection. Complexity 2018, 2018, 5238028. [Google Scholar] [CrossRef]
- Li, H.; Pan, S.J.; Wang, S.; Kot, A.C. Domain generalization with adversarial feature learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 5400–5409. [Google Scholar]
- Orgo, L.; Bachmann, M.; Kalev, K.; Jarvelaid, M.; Raik, J.; Hinrikus, H. Resting EEG functional connectivity and graph theoretical measures for discrimination of depression. In Proceedings of the 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Orlando, FL, USA, 16–19 February 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 389–392. [Google Scholar]
- Thoduparambil, P.P.; Dominic, A.; Varghese, S.M. EEG-based deep learning model for the automatic detection of clinical depression. Phys. Eng. Sci. Med. 2020, 43, 1349–1360. [Google Scholar] [CrossRef]
- Deng, X.; Fan, X.; Lv, X.; Sun, K. SparNet: A convolutional neural network for EEG space-frequency feature learning and depression discrimination. Front. Neuroinform. 2022, 16, 914823. [Google Scholar] [CrossRef]
- Cai, H.; Yuan, Z.; Gao, Y.; Sun, S.; Li, N.; Tian, F.; Xiao, H.; Li, J.; Yang, Z.; Li, X.; et al. A multi-modal open dataset for mental-disorder analysis. Sci. Data 2022, 9, 178. [Google Scholar] [CrossRef]
- Wang, B.; Kang, Y.; Huo, D.; Chen, D.; Song, W.; Zhang, F. Depression signal correlation identification from different EEG channels based on CNN feature extraction. Psychiatry Res. Neuroinform. 2023, 328, 111582. [Google Scholar] [CrossRef]
- Seal, A.; Bajpai, R.; Agnihotri, J.; Yazidi, A.; Herrera-Viedma, E.; Krejcar, O. DeprNet: A deep convolution neural network framework for detecting depression using EEG. IEEE Trans. Instrum. Meas. 2021, 70, 2505413. [Google Scholar] [CrossRef]
- Chen, T.; Guo, Y.; Hao, S.; Hong, R. Exploring self-attention graph pooling with EEG-based topological structure and soft label for depression detection. IEEE Trans. Affect. Comput. 2022, 13, 2106–2118. [Google Scholar] [CrossRef]
- Li, W.; Wang, H.; Zhuang, L. GCNs–FSMI: EEG recognition of mental illness based on fine-grained signal features and graph mutual information maximization. Expert Syst. Appl. 2023, 228, 120227. [Google Scholar] [CrossRef]
- Zhang, Z.; Meng, Q.; Jin, L.; Wang, H.; Hou, H. A novel EEG-based graph convolution network for depression detection: Incorporating secondary subject partitioning and attention mechanism. Expert Syst. Appl. 2024, 239, 122356. [Google Scholar] [CrossRef]
- Liu, W.; Jia, K.; Wang, Z. Graph-based EEG approach for depression prediction: Integrating time-frequency complexity and spatial topology. Front. Neurosci. 2024, 18, 1367212. [Google Scholar] [CrossRef]
- Navarro-Bravo, B.; Latorre, J.M.; Jiménez, A.; Cabello, R.; Fernández-Berrocal, P. Ability emotional intelligence in young people and older adults with and without depressive symptoms, considering gender and educational level. PeerJ 2019, 7, e6595. [Google Scholar] [CrossRef]
- Montemurro, S.; Borek, D.; Marinazzo, D.; Zago, S.; Masina, F.; Napoli, E.; Filippini, N.; Arcara, G. Aperiodic component of EEG power spectrum and cognitive performance are modulated by education in aging. Sci. Rep. 2024, 14, 15111. [Google Scholar] [CrossRef]
- Van Putten, M.J.A.M.; Olbrich, S.; Arns, M. Predicting sex from brain rhythms with deep learning. Sci. Rep. 2018, 8, 3069. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Hou, K.; Hu, B.; Shen, J.; Pan, J. EEG-based depression detection using convolutional neural network with demographic attention mechanism. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 128–133. [Google Scholar]
- Ksibi, A.; Zakariah, M.; Menzli, L.J.; Saidani, O.; Almuqren, L.; Hanafieh, R.A.M. Electroencephalography-based depression detection using multiple machine learning techniques. Diagnostics 2023, 13, 1779. [Google Scholar] [CrossRef]
- Sun, S.; Li, J.; Chen, H.; Gong, T.; Li, X.; Hu, B. A study of resting-state EEG biomarkers for depression recognition. arXiv 2020, arXiv:2002.11039. [Google Scholar] [CrossRef]
- Jas, M.; Engemann, D.A.; Bekhti, Y.; Raimondo, F.; Gramfort, A. Autoreject: Automated artifact rejection for MEG and EEG data. NeuroImage 2017, 159, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998. [Google Scholar]
- Altaheri, H.; Muhammad, G.; Alsulaiman, M. Physics-informed attention temporal convolutional network for EEG-based motor imagery classification. IEEE Trans. Ind. Inform. 2022, 19, 2249–2258. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar] [CrossRef]
- Lu, N.; Yin, T.; Jing, X. Deep learning solutions for motor imagery classification: A comparison study. In Proceedings of the 2020 8th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Republic of Korea, 26–28 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Ingolfsson, T.M.; Hersche, M.; Wang, X.; Kobayashi, N.; Cavigelli, L.; Benini, L. EEG-TCNet: An accurate temporal convolutional network for embedded motor-imagery brain–machine interfaces. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2958–2965. [Google Scholar]
- Duc, T.N.; Minh, C.T.; Xuan, T.P.; Kamioka, E. Convolutional neural networks for continuous QoE prediction in video streaming services. IEEE Access 2020, 8, 116268–116278. [Google Scholar] [CrossRef]
- Liu, C.; Wu, H.; Cheng, G.; Zhou, H.; Pang, Y. Rolling Bearing Degradation Identification Method Based on Improved Monopulse Feature Extraction and 1D Dilated Residual Convolutional Neural Network. Sensors 2025, 25, 4299. [Google Scholar] [CrossRef]
- Siddique, M.F.; Saleem, F.; Umar, M.; Kim, C.H.; Kim, J.-M. A hybrid deep learning approach for bearing fault diagnosis using continuous wavelet transform and attention-enhanced spatiotemporal feature extraction. Sensors 2025, 25, 2712. [Google Scholar] [CrossRef]
- Salk, R.H.; Hyde, J.S.; Abramson, L.Y. Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychol. Bull. 2017, 143, 783. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Li, Y.; Qin, H.; Li, X. Gender differences in the prevalence, correlated factors and comorbidity of depression in adolescents: A cross-sectional study in Shanghai, China. Front. Public Health 2024, 12, 1436413. [Google Scholar] [CrossRef]
- Hasanzadeh, F.; Mohebbi, M.; Rostami, R. Graph theory analysis of directed functional brain networks in major depressive disorder based on EEG signal. J. Neural Eng. 2020, 17, 026010. [Google Scholar] [CrossRef]
- Sun, S.; Chen, H.; Shao, X.; Liu, L.; Li, X.; Hu, B. EEG based depression recognition by combining functional brain network and traditional biomarkers. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Republic of Korea, 16–19 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2074–2081. [Google Scholar]
- Mumtaz, W.; Xia, L.; Yasin, M.A.M.; Ali, S.S.A.; Malik, A.S. A wavelet-based technique to predict treatment outcome for major depressive disorder. PLoS ONE 2017, 12, e0171409. [Google Scholar] [CrossRef]








| Model Variants | Accuracy (%) | Precision (%) | Recall (%) | F1 (%) | Kappa (%) | p |
|---|---|---|---|---|---|---|
| Baseline | 88.37 | 86.10 | 93.56 | 89.67 | 76.43 | <0.001 |
| +T1 | 98.67 | 98.74 | 98.81 | 98.77 | 97.33 | <0.001 |
| +T2 | 99.03 | 98.68 | 99.53 | 99.10 | 98.05 | <0.001 |
| +T2+T1 | 99.56 | 99.66 | 99.53 | 99.59 | 99.12 | 0.36 |
| +T1+T2(Ours) | 99.66 | 99.68 | 99.68 | 99.68 | 99.31 | - |
| Scholar | Year | Model | Accuracy (%) | Precision (%) | Recall (%) | F1 (%) | Kappa (%) |
|---|---|---|---|---|---|---|---|
| Zhang et al. [23] | 2020 | 1DCNN | 75.29 | - | - | 71.6 | - |
| Deng et al. [12] | 2022 | SparNet | 94.37 | - | - | 94.40 | - |
| Wang et al. [14] | 2023 | AlexNet | 73.90 | - | - | - | - |
| Zhang et al. [18] | 2024 | SSPA-GCN | 92.87 | 92.23 | 92.00 | 91.12 | - |
| Liu et al. [19] | 2024 | DBGCN | 98.30 | - | - | - | - |
| Ours | DIFNet-AY | 99.66 | 99.68 | 99.68 | 99.68 | 99.31 |
| Model | Accuracy (%) | Precision (%) | Recall (%) | F1 (%) | Kappa (%) |
|---|---|---|---|---|---|
| DIFNet-N | 99.87 | 99.83 | 99.91 | 99.87 | 99.74 |
| DIFNet-A | 99.93 | 99. 89 | 99.96 | 99.92 | 99.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhou, Q.; Li, M.; Li, J.; Zhao, J. A Novel Demographic Indicator Fusion Network (DIFNet) for Dynamic Fusion of EEG and Demographic Indicators for Robust Depression Detection. Sensors 2025, 25, 6549. https://doi.org/10.3390/s25216549
Wang C, Zhou Q, Li M, Li J, Zhao J. A Novel Demographic Indicator Fusion Network (DIFNet) for Dynamic Fusion of EEG and Demographic Indicators for Robust Depression Detection. Sensors. 2025; 25(21):6549. https://doi.org/10.3390/s25216549
Chicago/Turabian StyleWang, Chaoliang, Qingshu Zhou, Mengfan Li, Jiaxin Li, and Jing Zhao. 2025. "A Novel Demographic Indicator Fusion Network (DIFNet) for Dynamic Fusion of EEG and Demographic Indicators for Robust Depression Detection" Sensors 25, no. 21: 6549. https://doi.org/10.3390/s25216549
APA StyleWang, C., Zhou, Q., Li, M., Li, J., & Zhao, J. (2025). A Novel Demographic Indicator Fusion Network (DIFNet) for Dynamic Fusion of EEG and Demographic Indicators for Robust Depression Detection. Sensors, 25(21), 6549. https://doi.org/10.3390/s25216549

