Intelligent Gas Sensors: From Mechanism to Applications
Abstract
1. Introduction
2. The Conceptual Framework and Working Principle of Gas Sensors
2.1. Electronic Gas Sensor

2.2. Photoelectric Gas Sensor
2.3. Gas-Sensing Platforms Material
3. The Application of Intelligent Gas Sensors
3.1. Environmental Pollutant Detection and Monitoring Strategies

3.2. Healthcare Application


3.3. Agricultural Products Quality Control


3.4. Food Safety Inspection


3.5. Public Safety
3.6. Smart Gas Sensor in the IoT
4. Summary and Prospects
4.1. Sensing Accuracy and Detection Discrimination
4.2. Data Integrity and Reproducibility
4.3. Low-Frequency Noise Interference
4.4. Inherent Defects and Improvements
4.5. Material Science and Digital Integration
Author Contributions
Funding
Conflicts of Interest
References
- Potyrailo, R.A. Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet. Chem. Rev. 2016, 116, 11877–11923. [Google Scholar] [CrossRef]
- Shen, Y.; Wei, Y.; Zhu, C.; Cao, J.; Han, D.-M. Ratiometric Fluorescent Signals-Driven Smartphone-Based Portable Sensors for Onsite Visual Detection of Food Contaminants. Coord. Chem. Rev. 2022, 458, 214442. [Google Scholar] [CrossRef]
- Jin, T.; Zhou, J.; Lin, H.-Y.G.; Lin, P.T. Mid-Infrared Chalcogenide Waveguides for Real-Time and Nondestructive Volatile Organic Compound Detection. Anal. Chem. 2019, 91, 817–822. [Google Scholar] [CrossRef]
- Zhou, J.; Al Husseini, D.; Li, J.; Lin, Z.; Sukhishvili, S.; Coté, G.L.; Gutierrez-Osuna, R.; Lin, P.T. Detection of Volatile Organic Compounds Using Mid-Infrared Silicon Nitride Waveguide Sensors. Sci. Rep. 2022, 12, 5572. [Google Scholar] [CrossRef]
- Luo, Y.; Abidian, M.R.; Ahn, J.-H.; Akinwande, D.; Andrews, A.M.; Antonietti, M.; Bao, Z.; Berggren, M.; Berkey, C.A.; Bettinger, C.J.; et al. Technology Roadmap for Flexible Sensors. ACS Nano 2023, 17, 5211–5295. [Google Scholar] [CrossRef]
- Ling, Y.; An, T.; Yap, L.W.; Zhu, B.; Gong, S.; Cheng, W. Disruptive, Soft, Wearable Sensors. Adv. Mater. 2020, 32, 1904664. [Google Scholar] [CrossRef]
- Jayathilaka, W.A.D.M.; Qi, K.; Qin, Y.; Chinnappan, A.; Serrano-García, W.; Baskar, C.; Wang, H.; He, J.; Cui, S.; Thomas, S.W.; et al. Significance of Nanomaterials in Wearables: A Review on Wearable Actuators and Sensors. Adv. Mater. 2019, 31, 1805921. [Google Scholar] [CrossRef]
- Parichenko, A.; Huang, S.; Pang, J.; Ibarlucea, B.; Cuniberti, G. Recent Advances in Technologies toward the Development of 2D Materials-Based Electronic Noses. TrAC Trends Anal. Chem. 2023, 166, 117185. [Google Scholar] [CrossRef]
- Song, Z.; Ye, W.; Chen, Z.; Chen, Z.; Li, M.; Tang, W.; Wang, C.; Wan, Z.; Poddar, S.; Wen, X.; et al. Wireless Self-Powered High-Performance Integrated Nanostructured-Gas-Sensor Network for Future Smart Homes. ACS Nano 2021, 15, 7659–7667. [Google Scholar] [CrossRef] [PubMed]
- Yi, N.; Shen, M.; Erdely, D.; Cheng, H. Stretchable Gas Sensors for Detecting Biomarkers from Humans and Exposed Environments. TrAC Trends Anal. Chem. 2020, 133, 116085. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Kim, D.-H.; Jung, W.; Jang, J.-S.; Kim, Y.H.; Lee, Y.; Chang, K.; Lee, J.; Park, J.; Namkoong, K.; et al. Surface Activity-Tuned Metal Oxide Chemiresistor: Toward Direct and Quantitative Halitosis Diagnosis. ACS Nano 2021, 15, 14207–14217. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ren, Y.; Li, W.; Wu, L.; Deng, Y.; Fang, X. Intelligent Multifunctional Sensing Systems Based on Ordered Macro-Microporous Metal Organic Framework and Its Derivatives. Small Methods 2023, 7, 2201687. [Google Scholar] [CrossRef]
- Cai, C.; Mo, J.; Lu, Y.; Zhang, N.; Wu, Z.; Wang, S.; Nie, S. Integration of a Porous Wood-Based Triboelectric Nanogenerator and Gas Sensor for Real-Time Wireless Food-Quality Assessment. Nano Energy 2021, 83, 105833. [Google Scholar] [CrossRef]
- Zhao, G.; Sun, J.; Zhang, M.; Guo, S.; Wang, X.; Li, J.; Tong, Y.; Zhao, X.; Tang, Q.; Liu, Y. Highly Strain-Stable Intrinsically Stretchable Olfactory Sensors for Imperceptible Health Monitoring. Adv. Sci. 2023, 10, 2302974. [Google Scholar] [CrossRef]
- Guo, S.; Yang, D.; Zhang, S.; Dong, Q.; Li, B.; Tran, N.; Li, Z.; Xiong, Y.; Zaghloul, M.E. Development of a Cloud-Based Epidermal MoSe2 Device for Hazardous Gas Sensing. Adv. Funct. Mater. 2019, 29, 1900138. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, H.; Ding, Q.; Tao, K.; Shi, W.; Liu, C.; Chen, J.; Wu, J. A Self-Powered, Rechargeable, and Wearable Hydrogel Patch for Wireless Gas Detection with Extraordinary Performance. Adv. Funct. Mater. 2023, 33, 2300046. [Google Scholar] [CrossRef]
- Guo, Y. Wearable Sensors to Monitor Plant Health. Nat. Food 2023, 4, 350. [Google Scholar] [CrossRef]
- Jin, H.; Yu, J.; Cui, D.; Gao, S.; Yang, H.; Zhang, X.; Hua, C.; Cui, S.; Xue, C.; Zhang, Y.; et al. Remote Tracking Gas Molecular via the Standalone-Like Nanosensor-Based Tele-Monitoring System. Nano-Micro Lett. 2021, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Jirayupat, C.; Nagashima, K.; Hosomi, T.; Takahashi, T.; Samransuksamer, B.; Hanai, Y.; Nakao, A.; Nakatani, M.; Liu, J.; Zhang, G.; et al. Breath Odor-Based Individual Authentication by an Artificial Olfactory Sensor System and Machine Learning. Chem. Commun. 2022, 58, 6377–6380. [Google Scholar] [CrossRef] [PubMed]
- Abideen, Z.U.; Arifeen, W.U.; Bandara, Y.M.N.D.Y. Emerging Trends in Metal Oxide-Based Electronic Noses for Healthcare Applications: A Review. Nanoscale 2024, 16, 9259–9283. [Google Scholar] [CrossRef]
- Li, H.; Qu, T.; Liu, L.; Li, Y.; Hong, Z.; Xu, J. An IoT-Enabled Wearable Health Monitor for Synchronized ExG, PPG, and BioZ Measurement. IEEE Trans. Instrum. Meas. 2025, 74, 9512911. [Google Scholar] [CrossRef]
- Feng, L.; Liu, Y.; Wang, Y.; Zhou, H.; Lu, Z.; Li, T. Ultra-Compact Dual-Channel Integrated CO2 Infrared Gas Sensor. Microsyst. Nanoeng. 2024, 10, 151. [Google Scholar] [CrossRef]
- Qian, P.; Yu, M.; Zhang, S.; Jiang, S.; Tang, J.; Dong, S. The Application of Digital Twin Technology in Substation Management. In Proceedings of the 2023 International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 18–19 August 2023; pp. 128–133. [Google Scholar] [CrossRef]
- Yin, X.-K.; Dong, L.; Wu, H.-P.; Liu, L.-X.; Shao, X.-P. Design and Optimization of Photoacoustic CO Gas Sensor for Fault Diagnosis of SF6 Gas Insulated Equipment. Acta Phys. Sin. 2021, 70, 170701. [Google Scholar] [CrossRef]
- Wang, H.; Su, A.; Chang, J.; Liu, X.; Liang, C.; Xu, S. Current Advance of CRISPR/Cas-Based SERS Technology. Sens. Diagn. 2023, 2, 792–805. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, H.; Wang, C.; Pan, S.; He, J.; Liu, A.; Wang, J.; Sun, P.; Liu, F.; Lu, G. Room Temperature Wearable Gas Sensors for Fabrication and Applications. Adv. Sens. Res. 2024, 3, 2300035. [Google Scholar] [CrossRef]
- Shirley, C.P.; Raja, J.I.J.; Evangelin Sonia, S.V.; Titus, I. Recognition and Monitoring of Gas Leakage Using Infrared Imaging Technique with Machine Learning. Multimed. Tools Appl. 2023, 83, 35413–35426. [Google Scholar] [CrossRef]
- Hagen, N. Real-Time Quantification of Gas Leaks Using a Snapshot Infrared Spectral Imager. Sensors 2025, 25, 538. [Google Scholar] [CrossRef] [PubMed]
- Galanis, P.P.; He, P.J.W.; Katis, I.N.; Iles, A.H.; Kumar, A.J.U.; Eason, R.W.; Sones, C.L. Local Photo-Polymer Deposition-Assisted Fabrication of Multilayer Paper-Based Devices. Sens. Actuators B Chem. 2020, 322, 128574. [Google Scholar] [CrossRef]
- Zhang, F.; Jiao, C.; Shang, Y.; Cao, S.; Sun, R.; Lu, X.; Yan, Z.; Zeng, J. In Situ Growth of Conductive Metal–Organic Framework onto Cu2O for Highly Selective and Humidity-Independent Hydrogen Sulfide Detection in Food Quality Assessment. ACS Sens. 2024, 9, 1310–1320. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Cui, F.; Ma, C.; Julian McClements, D.; Liu, X.; Liu, F. High Internal Phase Emulsions Stabilized by Native and Heat-Treated Lactoferrin-Carboxymethyl Chitosan Complexes: Comparison of Molecular and Granular Emulsifiers. Food Chem. 2022, 370, 130507. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Lee, S.M.; Oh, M.-H.; Huh, Y.S.; Jang, H.W. Food Quality Assessment Using Chemoresistive Gas Sensors: Achievements and Future Perspectives. Sustain. Food Technol. 2024, 2, 266–280. [Google Scholar] [CrossRef]
- Herrmann, P.S.D.P.; Santos Luccas, M.D.; Ferreira, E.J.; Torre Neto, A. Application of Electronic Nose and Machine Learning Used to Detect Soybean Gases under Water Stress and Variability throughout the Daytime. Front. Plant Sci. 2024, 15, 1323296. [Google Scholar] [CrossRef]
- Khodadadi, R.; Eghbal, M.; Ofoghi, H.; Balaei, A.; Tamayol, A.; Abrinia, K.; Sanati-Nezhad, A.; Samandari, M. An Integrated Centrifugal Microfluidic Strategy for Point-of-Care Complete Blood Counting. Biosens. Bioelectron. 2024, 245, 115789. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Hossain, O.; Jamalzadegan, S.; Liu, Y.; Wang, H.; Saville, A.C.; Shymanovich, T.; Paul, R.; Rotenberg, D.; Whitfield, A.E.; et al. Abaxial Leaf Surface-Mounted Multimodal Wearable Sensor for Continuous Plant Physiology Monitoring. Sci. Adv. 2023, 9, eade2232. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, V.S.; Kumar, D.; Pandey, B.P.; Kumar, S. Advances in Photonic Crystal Fiber-Based Sensor for Detection of Physical and Biochemical Parameters—A Review. IEEE Sens. J. 2023, 23, 1012–1023. [Google Scholar] [CrossRef]
- Martinet, A.; Miebach, L.; Weltmann, K.; Emmert, S.; Bekeschus, S. Biomimetic Hydrogels—Tools for Regenerative Medicine, Oncology, and Understanding Medical Gas Plasma Therapy. Small 2025, 21, 2403856. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Zhao, Y.; Wu, G.; Cho, J.; Abid, M.; Choi, M.; Ó Coileáin, C.; Hung, K.-M.; Chang, C.-R.; Wu, H.-C. Enhanced NO2 Sensitivity of Vertically Stacked van Der Waals Heterostructure Gas Sensor and Its Remarkable Electric and Mechanical Tunability. ACS Appl. Mater. Interfaces 2024, 16, 9495–9505. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Huang, X.; Wang, H.; Zhao, J.; Li, C.; Zhu, M.; Chen, K. Miniature Mid-Infrared Photoacoustic Gas Sensor for Detecting Dissolved Carbon Dioxide in Seawater. Sens. Actuators B Chem. 2024, 405, 135370. [Google Scholar] [CrossRef]
- Yi, S.; Shi, W.; Yang, X.; Yao, Z. Engineering Sensitive Gas Sensor Based on MOF-Derived Hollow Metal-Oxide Semiconductor Heterostructures. Talanta 2023, 258, 124442. [Google Scholar] [CrossRef]
- Quan, W.; Shi, J.; Luo, H.; Fan, C.; Lv, W.; Chen, X.; Zeng, M.; Yang, J.; Hu, N.; Su, Y.; et al. Fully Flexible MXene-Based Gas Sensor on Paper for Highly Sensitive Room-Temperature Nitrogen Dioxide Detection. ACS Sens. 2023, 8, 103–113. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Z.; Meng, F.; Huo, S.; Hu, X.; Niu, P.; Wu, E. Strategies and Challenges for Improving the Performance of Two-Dimensional Materials-Based Gas Sensors. Adv. Phys. X 2024, 9, 2288353. [Google Scholar] [CrossRef]
- Zegebreal, L.T.; Tegegne, N.A.; Hone, F.G. Recent Progress in Hybrid Conducting Polymers and Metal Oxide Nanocomposite for Room-Temperature Gas Sensor Applications: A Review. Sens. Actuators A Phys. 2023, 359, 114472. [Google Scholar] [CrossRef]
- Tahir, H.E.; Xiaobo, Z.; Xiaowei, H.; Jiyong, S.; Mariod, A.A. Discrimination of Honeys Using Colorimetric Sensor Arrays, Sensory Analysis and Gas Chromatography Techniques. Food Chem. 2016, 206, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Lv, R.; Huang, X.; Ye, W.; Aheto, J.H.; Xu, H.; Dai, C.; Tian, X. Research on the Reaction Mechanism of Colorimetric Sensor Array with Characteristic Volatile gases-TMA during Fish Storage. J. Food Process. Eng. 2019, 42, e12952. [Google Scholar] [CrossRef]
- Dong, R.; Yang, M.; Zuo, Y.; Liang, L.; Xing, H.; Duan, X.; Chen, S. Conducting Polymers-Based Gas Sensors: Principles, Materials, and Applications. Sensors 2025, 25, 2724. [Google Scholar] [CrossRef]
- Arslan, M.; Zareef, M.; Tahir, H.E.; Guo, Z.; Rakha, A.; Xuetao, H.; Shi, J.; Zhihua, L.; Xiaobo, Z.; Khan, M.R. Discrimination of Rice Varieties Using Smartphone-Based Colorimetric Sensor Arrays and Gas Chromatography Techniques. Food Chem. 2022, 368, 130783. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, T.; He, P.; Ding, Y.; Chen, Q. Rapid Measurement of Fatty Acid Content during Flour Storage Using a Color-Sensitive Gas Sensor Array: Comparing the Effects of Swarm Intelligence Optimization Algorithms on Sensor Features. Food Chem. 2021, 338, 127828. [Google Scholar] [CrossRef]
- Liu, H.; Zuo, C.; Li, Z.; Liu, X.; Fang, X. Highly Crystallized Tin Dioxide Microwires toward Ultraviolet Photodetector and Humidity Sensor with High Performances. Adv. Electron. Mater. 2021, 7, 2100706. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Q.; Xv, H.; Tang, J.; Han, X.; Liu, X. Intelligent Mixed Trace Gas Recognition Driven by Frequency-Dependent Infrared QDs Laser Phototransistor. IEEE Sens. J. 2024, 24, 6071–6077. [Google Scholar] [CrossRef]
- Liu, X.-L.; Zhao, Y.; Wang, W.-J.; Ma, S.-X.; Ning, X.-J.; Zhao, L.; Zhuang, J. Photovoltaic Self-Powered Gas Sensing: A Review. IEEE Sens. J. 2021, 21, 5628–5644. [Google Scholar] [CrossRef]
- Wu, P.; Li, Y.; Yang, A.; Tan, X.; Chu, J.; Zhang, Y.; Yan, Y.; Tang, J.; Yuan, H.; Zhang, X.; et al. Advances in 2D Materials Based Gas Sensors for Industrial Machine Olfactory Applications. ACS Sens. 2024, 9, 2728–2776. [Google Scholar] [CrossRef]
- Goodwin, D.M.; Carta, M.; Ali, M.M.; Gillard, D.; Guy, O.J. Enhanced Nitrogen Dioxide Detection Using Resistive Graphene-Based Electronic Sensors Modified with Polymers of Intrinsic Microporosity. ACS Sens. 2025, 10, 1378–1386. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zheng, W.; Kumar, R.; Kumar, M.; Zhang, J. Conducting Polymer-Based Nanostructures for Gas Sensors. Coord. Chem. Rev. 2022, 462, 214517. [Google Scholar] [CrossRef]
- Lee, J.; Chun, J.H.; Kim, Y.; Lee, D.; Yoon, T.W.; Zhang, G.; Lee, W.H.; Kang, B. Ultrasensitive Flexible NO2 Sensors with Remote-Controllable ADC-Electropolymerized Conducting Polymers on Plastic. ACS Nano 2025, 19, 5515–5525. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Shi, J.; Li, Z.; Wang, X.; Hu, X.; Gong, Y.; Zou, X. A Novel Gas Sensor for Detecting Pork Freshness Based on PANI/AgNWs/Silk. Foods 2022, 11, 2372. [Google Scholar] [CrossRef]
- Hou, L.; Duan, J.; Xiong, F.; Carraro, C.; Shi, T.; Maboudian, R.; Long, H. Low Power Gas Sensors: From Structure to Application. ACS Sens. 2024, 9, 6327–6357. [Google Scholar] [CrossRef]
- Zhou, G.; Du, B.; Zhong, J.; Chen, L.; Sun, Y.; Yue, J.; Zhang, M.; Long, Z.; Song, T.; Peng, B.; et al. Advances in Gas Detection of Pattern Recognition Algorithms for Chemiresistive Gas Sensor. Materials 2024, 17, 5190. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Wang, T. Application of Polyoxometalates in Chemiresistive Gas Sensors: A Review. ACS Sens. 2022, 7, 3634–3643. [Google Scholar] [CrossRef]
- Han, Z.; Ahmad, W.; Rong, Y.; Chen, X.; Zhao, S.; Yu, J.; Zheng, P.; Huang, C.; Li, H. A Gas Sensors Detection System for Real-Time Monitoring of Changes in Volatile Organic Compounds during Oolong Tea Processing. Foods 2024, 13, 1721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, K.; Xie, K.; Wang, P.; Lin, L.; Su, L. Adsorption of Toxic and Harmful Gas NO2 and SO2 on TM (Fe, Co and Ni) Modified ZrSe2 Monolayer: A DFT Study. Mater. Today Commun. 2024, 39, 108483. [Google Scholar] [CrossRef]
- Li, N.; Wang, C.; Li, L.; Hao, Z.; Gu, J.; Wang, M.; Jiao, T. Chemical Gas Sensor, Surface Enhanced Raman Scattering and Photoelectrics of Composite Langmuir-Blodgett Films Consisting of Polypeptide and Dye Molecules. Colloids Surf. A Physicochem. Eng. Asp. 2023, 663, 131067. [Google Scholar] [CrossRef]
- Huang, X.; Li, Z.; Zou, X.; Shi, J.; Mao, H.; Zhao, J.; Hao, L.; Mel, H. Detection of Meat-Borne Trimethylamine Based on Nanoporous Colorimetric Sensor Arrays. Food Chem. 2016, 197, 930–936. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Z.; Chan, C.L.J.; Wan, Z.; Ye, W.; Tang, W.; Ma, Z.; Ren, B.; Zhang, D.; Song, Z.; et al. Biomimetic Olfactory Chips Based on Large-Scale Monolithically Integrated Nanotube Sensor Arrays. Nat. Electron. 2024, 7, 157–167. [Google Scholar] [CrossRef]
- Guan, B.; Zhao, J.; Jin, H.; Lin, H. Determination of Rice Storage Time with Colorimetric Sensor Array. Food Anal. Methods 2017, 10, 1054–1062. [Google Scholar] [CrossRef]
- Jayan, H.; Zhou, R.; Sun, C.; Wang, C.; Yin, L.; Zou, X.; Guo, Z. Intelligent Gas Sensors for Food Safety and Quality Monitoring: Advances, Applications, and Future Directions. Foods 2025, 14, 2706. [Google Scholar] [CrossRef]
- Hsieh, Y.-C.; Yao, D.-J. Intelligent Gas-Sensing Systems and Their Applications. J. Micromech. Microeng. 2018, 28, 093001. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Greenwood, P.L.; Halachmi, I. Advancements in Sensor Technology and Decision Support Intelligent Tools to Assist Smart Livestock Farming. J. Anim. Sci. 2021, 99, skab038. [Google Scholar] [CrossRef] [PubMed]
- Bathaei, M.J.; Singh, R.; Mirzajani, H.; Istif, E.; Akhtar, M.J.; Abbasiasl, T.; Beker, L. Photolithography-Based Microfabrication of Biodegradable Flexible and Stretchable Sensors. Adv. Mater. 2023, 35, 2207081. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, J.; Li, Q.; Li, G.; Tian, X.; Luo, Z.; Qiao, F.; Wu, X.; Zhang, J. Review of Printed Electrodes for Flexible Devices. Front. Mater. 2019, 5, 77. [Google Scholar] [CrossRef]
- Kaushal, S.; Nayi, P.; Rahadian, D.; Chen, H.-H. Applications of Electronic Nose Coupled with Statistical and Intelligent Pattern Recognition Techniques for Monitoring Tea Quality: A Review. Agriculture 2022, 12, 1359. [Google Scholar] [CrossRef]
- Kim, Y.U.; Kwon, N.Y.; Park, S.H.; Kim, C.W.; Chau, H.D.; Hoang, M.H.; Cho, M.J.; Choi, D.H. Patterned Sandwich-Type Silver Nanowire-Based Flexible Electrode by Photolithography. ACS Appl. Mater. Interfaces 2021, 13, 61463–61472. [Google Scholar] [CrossRef]
- Lee, E.K.; Park, C.H.; Lee, J.; Lee, H.R.; Yang, C.; Oh, J.H. Chemically Robust Ambipolar Organic Transistor Array Directly Patterned by Photolithography. Adv. Mater. 2017, 29, 1605282. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Yuan, Z.; Ji, H.; Meng, F. Precursor Chemical Mixtures Analysis Using Joint VMD Adversarial Autoencoder and Multitask CNN Algorithm via Gas Sensor. IEEE Trans. Instrum. Meas. 2023, 72, 1–11. [Google Scholar] [CrossRef]
- Li, L.; Zhdanov, A.V.; Papkovsky, D.B. Advanced Multimodal Solid-State Optochemical pH and Dual pH/O2 Sensors for Cell Analysis. Sens. Actuators B Chem. 2022, 371, 132486. [Google Scholar] [CrossRef]
- Kang, M.; Cho, I.; Park, J.; Jeong, J.; Lee, K.; Lee, B.; Del Orbe Henriquez, D.; Yoon, K.; Park, I. High Accuracy Real-Time Multi-Gas Identification by a Batch-Uniform Gas Sensor Array and Deep Learning Algorithm. ACS Sens. 2022, 7, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Hao, Q.; Liu, J.; Qi, D.; Gan, H.; Zhu, J.; Liu, F.; Zheng, Z.; Zhang, W. Flexible Photodetectors Based on All-Solution-Processed Cu Electrodes and InSe Nanoflakes with High Stabilities. Adv. Funct. Materials. 2022, 32, 2108261. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, C.; Wang, F.; Yu, J.; Yang, G.; Surmenev, R.A.; Li, Z.; Ding, B. Smart Textiles for Personalized Sports and Healthcare. Nano-Micro Lett. 2025, 17, 232. [Google Scholar] [CrossRef]
- Kim, D.S.; Jeong, J.-M.; Park, H.J.; Kim, Y.K.; Lee, K.G.; Choi, B.G. Highly Concentrated, Conductive, Defect-Free Graphene Ink for Screen-Printed Sensor Application. Nano-Micro Lett. 2021, 13, 87. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Lee, S.; Seok, Y.; Ko, Y.; Jang, H.; Watanabe, K.; Taniguchi, T.; Lee, K. Drain-Induced Multifunctional Ambipolar Electronics Based on Junctionless MoS2. ACS Nano 2024, 18, 4320–4328. [Google Scholar] [CrossRef]
- Gomez De Arco, L.; Zhang, Y.; Schlenker, C.W.; Ryu, K.; Thompson, M.E.; Zhou, C. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics. ACS Nano 2010, 4, 2865–2873. [Google Scholar] [CrossRef]
- Kim, N.; Kim, S.; Ham, S.-H.; Park, J.; Han, M.J.; Kim, M. Chiral Materials in Wearable Sensors: Current Advances and Future Directions. ACS Sens. 2025, 10, 5288–5298. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Jeon, S.; Oh, S.J. Wearable Sensors Based on Colloidal Nanocrystals. Nano Converg. 2019, 6, 10. [Google Scholar] [CrossRef]
- Morishita, Y.; Takahashi, K.; Hasaba, R.; Egami, A.; Abe, T.; Suzuki, M.; Murata, T.; Nakagawa, Y.; Yamazaki, Y.; Park, S.; et al. 150 GHz-Band Compact Phased-Array AiP Module for XR Applications Toward 6G. IEEE Microw. Wireless Tech. Lett. 2025, 35, 920–923. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, L.; Qi, Z.; Liu, P.; Zhu, H.; Wang, Y. Full-Duplex Wireless Light Communication Using Green Laser Diodes. Opt. Express 2024, 32, 13543. [Google Scholar] [CrossRef]
- Park, W.; Choi, J.; Kim, S.; You, C. Integrated Antenna Module for Advanced Vehicle Communication. In Proceedings of the 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC-URSI Radio Science Meeting (AP-S/INC-USNC-URSI), Firenze, Italy, 14–19 July 2024; pp. 769–770. [Google Scholar] [CrossRef]
- Chiang, D.-H.; Jiang, Z.; Tian, C.; Wang, C.-Y. Development and Validation of a Dynamic Early Warning System with Time-Varying Machine Learning Models for Predicting Hemodynamic Instability in Critical Care: A Multicohort Study. Crit. Care 2025, 29, 318. [Google Scholar] [CrossRef]
- Ayzel, G.; Heistermann, M. Brief Communication: Training of AI-Based Nowcasting Models for Rainfall Early Warning Should Take into Account User Requirements. Nat. Hazards Earth Syst. Sci. 2025, 25, 41–47. [Google Scholar] [CrossRef]
- Panda, S.; Mehlawat, S.; Dhariwal, N.; Kumar, A.; Sanger, A. Comprehensive Review on Gas Sensors: Unveiling Recent Developments and Addressing Challenges. Mater. Sci. Eng. B 2024, 308, 117616. [Google Scholar] [CrossRef]
- Lu, J.; Shiraishi, N.; Imaizumi, R.; Zhang, L.; Kimura, M. Process Development of a Liquid-Gated Graphene Field-Effect Transistor Gas Sensor for Applications in Smart Agriculture. Sensors 2024, 24, 6376. [Google Scholar] [CrossRef]
- Schlicke, H.; Maletz, R.; Dornack, C.; Fery, A. Plasmonic Particle Integration into Near-Infrared Photodetectors and Photoactivated Gas Sensors: Toward Sustainable Next-Generation Ubiquitous Sensing. Small 2024, 20, 2403502. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cao, J.; Zhang, R.; Chen, L.; Li, Y.; Zhang, Y. Design Strategies of Semiconductor Sensors toward Ammonia Monitoring in Smart Agriculture. J. Environ. Chem. Eng. 2024, 12, 114380. [Google Scholar] [CrossRef]
- Karami, H.; Thurn, B.; De Boer, N.K.; Ramos, J.; Covington, J.A.; Lozano, J.; Liu, T.; Zhang, W.; Su, S.; Ueland, M. Application of Gas Sensor Technology to Locate Victims in Mass Disasters—A Review. Nat Hazards 2025, 121, 31–60. [Google Scholar] [CrossRef]
- Kalidoss, R.; Umapathy, S. An Overview on the Exponential Growth of Non-Invasive Diagnosis of Diabetes Mellitus from Exhaled Breath by Nanostructured Metal Oxide Chemi-Resistive Gas Sensors and μ-Preconcentrator. Biomed. Microdevices 2020, 22, 2. [Google Scholar] [CrossRef]
- Han, G.D.; Bae, K.; Kang, E.H.; Choi, H.J.; Shim, J.H. Inkjet Printing for Manufacturing Solid Oxide Fuel Cells. ACS Energy Lett. 2020, 5, 1586–1592. [Google Scholar] [CrossRef]
- Wang, Z.; Han, Y.; Yan, L.; Gong, C.; Kang, J.; Zhang, H.; Sun, X.; Zhang, L.; Lin, J.; Luo, Q.; et al. High Power Conversion Efficiency of 13.61% for 1 cm2 Flexible Polymer Solar Cells Based on Patternable and Mass-Producible Gravure-Printed Silver Nanowire Electrodes. Adv. Funct. Mater. 2021, 31, 2007276. [Google Scholar] [CrossRef]
- Lee, K.; Cho, I.; Kang, M.; Jeong, J.; Choi, M.; Woo, K.Y.; Yoon, K.-J.; Cho, Y.-H.; Park, I. Ultra-Low-Power E-Nose System Based on Multi-Micro-LED-Integrated, Nanostructured Gas Sensors and Deep Learning. ACS Nano 2023, 17, 539–551. [Google Scholar] [CrossRef]
- Pozarycki, T.A.; Zu, W.; Wilcox, B.T.; Bartlett, M.D. A Flexible and Electrically Conductive Liquid Metal Adhesive for Hybrid Electronic Integration. Adv. Funct. Mater. 2024, 34, 2313567. [Google Scholar] [CrossRef]
- Miyake, T.; Takakuwa, M.; Inoue, D.; Hashizume, D.; Yokota, T.; Umezu, S.; Fukuda, K.; Someya, T. Direct Conductive Bonding of Silver Electrodes on Ultrathin Polymer Films. ACS Appl. Electron. Mater. 2024, 6, 7261–7267. [Google Scholar] [CrossRef]
- Polychronopoulos, N.D.; Brouzgou, A. Direct Ink Writing for Electrochemical Device Fabrication: A Review of 3D-Printed Electrodes and Ink Rheology. Catalysts 2024, 14, 110. [Google Scholar] [CrossRef]
- Yamagishi, K.; Ching, T.; Chian, N.; Tan, M.; Zhou, W.; Huang, S.Y.; Hashimoto, M. Flexible and Stretchable Liquid-Metal Microfluidic Electronics Using Directly Printed 3D Microchannel Networks. Adv. Funct. Mater. 2024, 34, 2311219. [Google Scholar] [CrossRef]
- Shang, J.; Mohammadi, M.; Strandberg, J.; Petsagkourakis, I.; Åhlin, J.; Hagel, O.; Yi, Y.; Herlogsson, L.; Tybrandt, K. Fully Screen Printed Stretchable Liquid Metal Multilayer Circuits Using Green Solvents and Scalable Water-Spray Sintering. Npj Flex. Electron. 2025, 9, 19. [Google Scholar] [CrossRef]
- You, K.; Wang, Z.; Lin, J.; Guo, X.; Lin, L.; Liu, Y.; Li, F.; Huang, W. On-Demand Picoliter-Level-Droplet Inkjet Printing for Micro Fabrication and Functional Applications. Small 2024, 20, 2402638. [Google Scholar] [CrossRef]
- Alrammouz, R.; Podlecki, J.; Abboud, P.; Sorli, B.; Habchi, R. A Review on Flexible Gas Sensors: From Materials to Devices. Sens. Actuators A Phys. 2018, 284, 209–231. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Y.; Li, H.; He, Z.; Zang, J.; Du, C.; Yu, Y. Friction for Flexible Pressure Sensors and Arrays on Polymers. J. Sci. Adv. Mater. Devices 2022, 7, 100512. [Google Scholar] [CrossRef]
- Mamou, D.; Nsubuga, L.; Lisboa Marcondes, T.; Høegh, S.O.; Hvam, J.; Niekiel, F.; Lofink, F.; Rubahn, H.-G.; De Oliveira Hansen, R. Surface Modification Enabling Reproducible Cantilever Functionalization for Industrial Gas Sensors. Sensors 2021, 21, 6041. [Google Scholar] [CrossRef]
- Dagdeviren, C.; Hwang, S.; Su, Y.; Kim, S.; Cheng, H.; Gur, O.; Haney, R.; Omenetto, F.G.; Huang, Y.; Rogers, J.A. Transient, Biocompatible Electronics and Energy Harvesters Based on ZnO. Small 2013, 9, 3398–3404. [Google Scholar] [CrossRef]
- Xue, L.; Ren, Y.; Li, Y.; Xie, W.; Chen, K.; Zou, Y.; Wu, L.; Deng, Y. Pt-Pd Nanoalloys Functionalized Mesoporous SnO2 Spheres: Tailored Synthesis, Sensing Mechanism, and Device Integration. Small 2023, 19, 2302327. [Google Scholar] [CrossRef]
- Jiang, F.; Deng, Y.; Chen, K.; Li, J.; Huang, X.; Zou, Y.; Wu, L.; Xie, W.; Deng, Y. A Straightforward Solvent-Pair-Enabled Multicomponent Coassembly Approach toward Noble-Metal-Nanoparticle-Decorated Mesoporous Tungsten Oxide for Trace Ammonia Sensing. Adv. Mater. 2024, 36, 2313547. [Google Scholar] [CrossRef]
- Huang, X.; Chen, K.; Xie, W.; Li, Y.; Yang, F.; Deng, Y.; Li, J.; Jiang, F.; Shu, Y.; Wu, L.; et al. Chemiresistive Gas Sensors Based on Highly Permeable Sn-Doped Bismuth Subcarbonate Microspheres: Facile Synthesis, Sensing Performance, and Mechanism Study. Adv. Funct. Mater. 2023, 33, 2304718. [Google Scholar] [CrossRef]
- Chyan, Y.; Ye, R.; Li, Y.; Singh, S.P.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Nano 2018, 12, 2176–2183. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, G.; Zhu, L.; Fei, Q.; Zhang, Z.; Chen, Z.; An, F.; Chen, Y.; Ling, Y.; Guo, P.; et al. Pencil–Paper on-Skin Electronics. Proc. Natl. Acad. Sci. USA 2020, 117, 18292–18301. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xue, Y.; Peng, H.; Qin, W.; Zhou, B.; Zhao, X.; Liu, G.; Li, S.; Guo, R. Wide Strain Range and High Sensitivity Sandwich Structure CNTs/AgNWs/CNTs/TPU Strain Sensors for Human Motion Detection. Sens. Actuators A Phys. 2024, 366, 114998. [Google Scholar] [CrossRef]
- Duan, C.; Tian, Y.; Wang, X.; Wu, J.; Liu, B.; Fu, D.; Zhang, Y.; Lv, W.; Hu, L.; Wang, F.; et al. Anchoring Mo Single Atoms on N-CNTs Synchronizes Hydrogenation/Dehydrogenation Property of Mg/MgH2. Nano Energy 2023, 113, 108536. [Google Scholar] [CrossRef]
- Zong, B.; Xu, Q.; Li, Q.; Fang, X.; Chen, X.; Liu, C.; Zang, J.; Bo, Z.; Mao, S. Novel Insights into the Unique Intrinsic Sensing Behaviors of 2D Nanomaterials for Volatile Organic Compounds: From Graphene to MoS2 and Black Phosphorous. J. Mater. Chem. A 2021, 9, 14411–14421. [Google Scholar] [CrossRef]
- Rao, Y.; Li, Z.; Zhang, T.; Wang, Z.; Li, W.; Wang, X.; Sun, L.; Ren, Y.; Tao, L. Synthesis of Ordered Mesoporous Transition Metal Dichalcogenides by Direct Organic–Inorganic Co-Assembly. Adv. Funct. Mater. 2024, 34, 2408426. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Yang, B.; Tan, J.; Ding, X.; Li, W. Recent Advances in Multidimensional (1D, 2D, and 3D) Composite Sensors Derived from MXene: Synthesis, Structure, Application, and Perspective. Small Methods 2021, 5, 2100409. [Google Scholar] [CrossRef]
- Zhao, W.-N.; Yun, N.; Dai, Z.-H.; Li, Y.-F. A High-Performance Trace Level Acetone Sensor Using an Indispensable V4C3Tx MXene. RSC Adv. 2020, 10, 1261–1270. [Google Scholar] [CrossRef]
- Cai, S.; Huang, X.; Luo, M.; Xiong, D.; Pang, W.; Wang, M.; Wang, L.; Li, S.; Luo, P.; Gao, Z. High-Performance Ammonia Sensor at Room Temperature Based on 2D Conductive MOF Cu3(HITP)2. Talanta 2025, 285, 127226. [Google Scholar] [CrossRef]
- Lu, G.; Zong, B.; Tao, T.; Yang, Y.; Li, Q.; Mao, S. High-Performance Ni3(HHTP)2 Film-Based Flexible Field-Effect Transistor Gas Sensors. ACS Sens. 2024, 9, 1916–1926. [Google Scholar] [CrossRef]
- Xie, F.; Wang, H.; Li, J. Flexible Hydrogen-Bonded Organic Framework to Split Ethane and Ethylene. Matter 2022, 5, 2516–2518. [Google Scholar] [CrossRef]
- Huang, Q.; Li, W.; Mao, Z.; Qu, L.; Li, Y.; Zhang, H.; Yu, T.; Yang, Z.; Zhao, J.; Zhang, Y.; et al. An Exceptionally Flexible Hydrogen-Bonded Organic Framework with Large-Scale Void Regulation and Adaptive Guest Accommodation Abilities. Nat. Commun. 2019, 10, 3074. [Google Scholar] [CrossRef]
- Luo, Y.; Li, J.; Ding, Q.; Wang, H.; Liu, C.; Wu, J. Functionalized Hydrogel-Based Wearable Gas and Humidity Sensors. Nano-Micro Lett. 2023, 15, 136. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Ding, Q.; Wang, H.; Wu, Z.; Luo, Y.; Shi, W.; Yang, L.; Liang, Y.; Liu, C.; Wu, J. Design of Stretchable and Self-Powered Sensing Device for Portable and Remote Trace Biomarkers Detection. Nat. Commun. 2023, 14, 5221. [Google Scholar] [CrossRef]
- Middya, P.; Chakravarty, Y.; Maity, S.; Chattopadhyay, S. Review: An Overview on Applications of Di- and Poly-Nuclear Complexes of Zinc with Salicylaldehyde-Based Azine Schiff Bases. J. Coord. Chem. 2023, 76, 1777–1790. [Google Scholar] [CrossRef]
- Pandey, A.; Gaur, V. Interfacial Characteristics of Nickel-Based Hybrid Structures Fabricated Using Directed Energy Deposition. Mater. Sci. Eng. A 2024, 911, 146934. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, F.; Zhang, Y.; Liang, Y. Research Progress of Temperature and Pressure Compensation Method of Industrial Environment Gas Sensor. Phys. Fluids 2025, 37, 051301. [Google Scholar] [CrossRef]
- Zhai, Z.; Liu, Y.; Li, C.; Wang, D.; Wu, H. Electronic Noses: From Gas-Sensitive Components and Practical Applications to Data Processing. Sensors 2024, 24, 4806. [Google Scholar] [CrossRef]
- Roy, D.D.; Roy, P.; Chanda, M.; De, D. Ultra-Low Voltage Adenine Based Gas Sensor to Detect H2 and NH3 at Room Temperature: First-Principles Paradigm. Int. J. Hydrogen Energy 2023, 48, 4931–4941. [Google Scholar] [CrossRef]
- Gupta Chatterjee, S.; Chatterjee, S.; Ray, A.K.; Chakraborty, A.K. Graphene–Metal Oxide Nanohybrids for Toxic Gas Sensor: A Review. Sens. Actuators B Chem. 2015, 221, 1170–1181. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.; Song, Z.; Ye, W.; Fan, Z. Smart Gas Sensor Arrays Powered by Artificial Intelligence. J. Semicond. 2019, 40, 111601. [Google Scholar] [CrossRef]
- Kadam, S.A. Advancements in Monolayer TMD-Based Gas Sensors: Synthesis, Mechanisms, Electronic Structure Engineering, and Flexible Wearable Sensors for Real-World Applications and Future Prospects. Chem. Eng. J. 2025, 517, 164223. [Google Scholar] [CrossRef]
- Sun, J.; Zheng, H.; Diao, W.; Sun, Z.; Qi, Z.; Wang, X. Prototype-Optimized Unsupervised Domain Adaptation via Dynamic Transformer Encoder for Sensor Drift Compensation in Electronic Nose Systems. Expert Syst. Appl. 2025, 260, 125444. [Google Scholar] [CrossRef]
- Meng, Z.; Stolz, R.M.; Mendecki, L.; Mirica, K.A. Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chem. Rev. 2019, 119, 478–598. [Google Scholar] [CrossRef]
- Huang, X.; Zou, X.; Shi, J.; Li, Z.; Zhao, J. Colorimetric Sensor Arrays Based on Chemo-Responsive Dyes for Food Odor Visualization. Trends Food Sci. Technol. 2018, 81, 90–107. [Google Scholar] [CrossRef]
- Lv, R.; Huang, X.; Aheto, J.H.; Mu, L.; Tian, X. Analysis of Fish Spoilage by Gas Chromatography–Mass Spectrometry and Electronic Olfaction Bionic System. J. Food Saf. 2018, 38, e12557. [Google Scholar] [CrossRef]
- Fang, X.; Zong, B.; Mao, S. Metal–Organic Framework-Based Sensors for Environmental Contaminant Sensing. Nano-Micro Lett. 2018, 10, 64. [Google Scholar] [CrossRef]
- Raju, P.; Li, Q. Review—Semiconductor Materials and Devices for Gas Sensors. J. Electrochem. Soc. 2022, 169, 057518. [Google Scholar] [CrossRef]
- Tian, X.; Cui, X.; Lai, T.; Ren, J.; Yang, Z.; Xiao, M.; Wang, B.; Xiao, X.; Wang, Y. Gas Sensors Based on TiO2 Nanostructured Materials for the Detection of Hazardous Gases: A Review. Nano Mater. Sci. 2021, 3, 390–403. [Google Scholar] [CrossRef]
- Mishra, R.K.; Kumar, V.; Trung, L.G.; Choi, G.J.; Ryu, J.W.; Bhardwaj, R.; Kumar, P.; Singh, J.; Lee, S.H.; Gwag, J.S. Recent Advances in ZnO Nanostructure as a Gas-sensing Element for an Acetone Sensor: A Short Review. Luminescence 2023, 38, 1087–1101. [Google Scholar] [CrossRef]
- Hakeem Anwer, A.; Saadaoui, M.; Mohamed, A.T.; Ahmad, N.; Benamor, A. State-of-the-Art Advances and Challenges in Wearable Gas Sensors for Emerging Applications: Innovations and Future Prospects. Chem. Eng. J. 2024, 502, 157899. [Google Scholar] [CrossRef]
- Askim, J.R.; Mahmoudi, M.; Suslick, K.S. Optical Sensor Arrays for Chemical Sensing: The Optoelectronic Nose. Chem. Soc. Rev. 2013, 42, 8649. [Google Scholar] [CrossRef]
- Yu, H.-L.; Wang, J.; Zheng, B.; Zhang, B.-W.; Liu, L.-Q.; Zhou, Y.-W.; Zhang, C.; Xue, X.-L. Fabrication of Single Crystalline WO3 Nano-Belts Based Photoelectric Gas Sensor for Detection of High Concentration Ethanol Gas at Room Temperature. Sens. Actuators A Phys. 2020, 303, 111865. [Google Scholar] [CrossRef]
- Yao, B.; Yu, C.; Wu, Y.; Huang, S.-W.; Wu, H.; Gong, Y.; Chen, Y.; Li, Y.; Wong, C.W.; Fan, X.; et al. Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection. Nano Lett. 2017, 17, 4996–5002. [Google Scholar] [CrossRef]
- Xie, F. Natural Polymer Starch-Based Materials for Flexible Electronic Sensor Development: A Review of Recent Progress. Carbohydr. Polym. 2024, 337, 122116. [Google Scholar] [CrossRef]
- He, Y.; Xu, X.; Xiao, S.; Wu, J.; Zhou, P.; Chen, L.; Liu, H. Research Progress and Application of Multimodal Flexible Sensors for Electronic Skin. ACS Sens. 2024, 9, 2275–2293. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Bai, Y.; Zou, J.; Cheng, J.; An, Y.; Zhang, Z.; Li, Z.; Lin, S.; Zhao, S.; Li, N. Flexible Capacitive Pressure Sensor: Material, Structure, Fabrication and Application. Nondestruct. Test. Eval. 2024, 39, 1749–1790. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, S.; Wen, X.; Huang, Q.; Qiu, P.; Wei, T.; Zhang, H.; Wang, J.; Zhang, D.W.; Shi, X.; et al. A Fully Flexible Intelligent Thermal Touch Panel Based on Intrinsically Plastic Ag2S Semiconductor. Adv. Mater. 2022, 34, 2107479. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, D.; Chen, X.; Sun, X.; Liao, J.; Pang, J.; Wu, S. Construction and Mechanism of Konjac Glucomannan-Based Laminated Flexible Sensor Hydrogel. Carbohydr. Polym. 2025, 358, 123564. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Wang, P.; Jiang, Y.; Sun, H.; Meng, C. Intrinsically Flexible and Breathable Supercapacitive Pressure Sensor Based on MXene and Ionic Gel Decorating Textiles for Comfortable and Ultrasensitive Wearable Healthcare Monitoring. ACS Appl. Electron. Mater. 2022, 4, 1958–1967. [Google Scholar] [CrossRef]
- Huang, S.; Zhao, X.; Hao, C.; Ma, Z.; Wang, H.; Zhang, A.; Zhang, W.; Li, L.; Zhang, W. Multifunctional PVDF/CeO2@PDA Nanofiber Textiles with Piezoelectric and Piezo-Phototronic Properties for Self-Powered Piezoelectric Sensor and Photodetector. Chem. Eng. J. 2024, 482, 148950. [Google Scholar] [CrossRef]
- Lee, M.-H. Wearable Strain Sensor and Flexible Direct-Current Nanogenerator Made by Medical Mask Wastes and PEDOT:PSS-Based Conductive Inks. Sustain. Mater. Technol. 2025, 44, e01400. [Google Scholar] [CrossRef]
- Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di Natale, C. Porphyrinoids for Chemical Sensor Applications. Chem. Rev. 2017, 117, 2517–2583. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, S.; Wang, X.; Gao, Y.; Cui, X. Development and Applications of Mussel-Inspired Composite Hydrogels for Flexible Bioelectronics. Chem. Eng. J. 2023, 474, 145891. [Google Scholar] [CrossRef]
- Li, Q.; Li, Y.; Zeng, W. Preparation and Application of 2D MXene-Based Gas Sensors: A Review. Chemosensors 2021, 9, 225. [Google Scholar] [CrossRef]
- Sriram, S.R.; Parne, S.R.; Pothukanuri, N.; Edla, D.R. Prospects of Spray Pyrolysis Technique for Gas Sensor Applications—A Comprehensive Review. J. Anal. Appl. Pyrolysis 2022, 164, 105527. [Google Scholar] [CrossRef]
- Kumar, K.; Chaudhri, S.N.; Rajput, N.S.; Shvetsov, A.V.; Sahal, R.; Alsamhi, S.H. An IoT-Enabled E-Nose for Remote Detection and Monitoring of Airborne Pollution Hazards Using LoRa Network Protocol. Sensors 2023, 23, 4885. [Google Scholar] [CrossRef]
- Khan, S.; Newport, D.; Le Calvé, S. Gas Detection Using Portable Deep-UV Absorption Spectrophotometry: A Review. Sensors 2019, 19, 5210. [Google Scholar] [CrossRef]
- Lin, H.; Kang, W.; Kutsanedzie, F.Y.H.; Chen, Q. A Novel Nanoscaled Chemo Dye–Based Sensor for the Identification of Volatile Organic Compounds During the Mildewing Process of Stored Wheat. Food Anal. Methods 2019, 12, 2895–2907. [Google Scholar] [CrossRef]
- Shinde, P.V.; Patra, A.; Rout, C.S. A Review on the Sensing Mechanisms and Recent Developments on Metal Halide-Based Perovskite Gas Sensors. J. Mater. Chem. C 2022, 10, 10196–10223. [Google Scholar] [CrossRef]
- Vaidyanathan, A.; Mondal, B.; Rout, C.S.; Chakraborty, B. Plasmonic Gas Sensors Based on Nanomaterials: Mechanisms and Recent Developments. J. Phys. D Appl. Phys. 2024, 57, 263002. [Google Scholar] [CrossRef]
- Li, Z.; Suslick, K.S. A Hand-Held Optoelectronic Nose for the Identification of Liquors. ACS Sens. 2018, 3, 121–127. [Google Scholar] [CrossRef]
- Li, Z.; Suslick, K.S. The Optoelectronic Nose. Acc. Chem. Res. 2021, 54, 950–960. [Google Scholar] [CrossRef]
- Kang, W.; Lin, H.; Yao-Say Solomon Adade, S.; Wang, Z.; Ouyang, Q.; Chen, Q. Advanced Sensing of Volatile Organic Compounds in the Fermentation of Kombucha Tea Extract Enabled by Nano-Colorimetric Sensor Array Based on Density Functional Theory. Food Chem. 2023, 405, 134193. [Google Scholar] [CrossRef]
- Liu, S.; Rong, Y.; Chen, Q.; Ouyang, Q. Colorimetric Sensor Array Combined with Chemometric Methods for the Assessment of Aroma Produced during the Drying of Tencha. Food Chem. 2024, 432, 137190. [Google Scholar] [CrossRef] [PubMed]
- Doğan, V.; Evliya, M.; Nesrin Kahyaoglu, L.; Kılıç, V. On-Site Colorimetric Food Spoilage Monitoring with Smartphone Embedded Machine Learning. Talanta 2024, 266, 125021. [Google Scholar] [CrossRef]
- Liu, X.; Huo, D.; Li, J.; Ma, Y.; Liu, H.; Luo, H.; Zhang, S.; Luo, X.; Hou, C. Pattern-Recognizing-Assisted Detection of Mildewed Wheat by Dyes/Dyes-Cu-MOF Paper-Based Colorimetric Sensor Array. Food Chem. 2023, 415, 135525. [Google Scholar] [CrossRef]
- Jang, S.; Son, S.U.; Kim, J.; Kim, H.; Lim, J.; Seo, S.B.; Kang, B.; Kang, T.; Jung, J.; Seo, S.; et al. Polydiacetylene-Based Hydrogel Beads as Colorimetric Sensors for the Detection of Biogenic Amines in Spoiled Meat. Food Chem. 2023, 403, 134317. [Google Scholar] [CrossRef]
- Mazur, F.; Han, Z.; Tjandra, A.D.; Chandrawati, R. Digitalization of Colorimetric Sensor Technologies for Food Safety. Adv. Mater. 2024, 36, 2404274. [Google Scholar] [CrossRef]
- Christodouleas, D.C.; Nemiroski, A.; Kumar, A.A.; Whitesides, G.M. Broadly Available Imaging Devices Enable High-Quality Low-Cost Photometry. Anal. Chem. 2015, 87, 9170–9178. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Sedeño, P.; Pingarrón, J.M.; Riu, J.; Rius, F.X. Electrochemical Sensing Based on Carbon Nanotubes. TrAC Trends Anal. Chem. 2010, 29, 939–953. [Google Scholar] [CrossRef]
- Moret, S.; Dyson, P.J.; Laurenczy, G. Direct Synthesis of Formic Acid from Carbon Dioxide by Hydrogenation in Acidic Media. Nat. Commun. 2014, 5, 4017. [Google Scholar] [CrossRef]
- Zhang, P.; Xiao, Y.; Zhang, J.; Liu, B.; Ma, X.; Wang, Y. Highly Sensitive Gas Sensing Platforms Based on Field Effect Transistor-A Review. Anal. Chim. Acta 2021, 1172, 338575. [Google Scholar] [CrossRef]
- Qin, Y.; Ye, Z. DFT Study on Interaction of NO2 with the Vacancy-Defected WO3 Nanowires for Gas-Sensing. Sens. Actuators B Chem. 2016, 222, 499–507. [Google Scholar] [CrossRef]
- Agarwal, D.K.; Kandpal, M.; Surya, S.G. Characterization and Detection of Cardiac Troponin-T Protein by Using ‘Aptamer’ Mediated Biofunctionalization of ZnO Thin-Film Transistor. Appl. Surf. Sci. 2019, 466, 874–881. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Wang, X.-Z.; Liu, F.-J.; Zhang, G.-S.; Song, X.-J.; Tian, J.; Cui, H.-Z. Fabrication of Porous Zn2TiO4–ZnO Microtubes and Analysis of Their Acetone Gas Sensing Properties. Rare Met. 2021, 40, 1528–1535. [Google Scholar] [CrossRef]
- Kim, D.-H.; Jang, J.-S.; Koo, W.-T.; Choi, S.-J.; Kim, S.-J.; Kim, I.-D. Hierarchically Interconnected Porosity Control of Catalyst-Loaded WO3 Nanofiber Scaffold: Superior Acetone Sensing Layers for Exhaled Breath Analysis. Sens. Actuators B Chem. 2018, 259, 616–625. [Google Scholar] [CrossRef]
- Arunkumar, S.; Hou, T.; Kim, Y.-B.; Choi, B.; Park, S.H.; Jung, S.; Lee, D.-W. Au Decorated ZnO Hierarchical Architectures: Facile Synthesis, Tunable Morphology and Enhanced CO Detection at Room Temperature. Sens. Actuators B Chem. 2017, 243, 990–1001. [Google Scholar] [CrossRef]
- Ouyang, J.; Pei, J.; Kuang, Q.; Xie, Z.; Zheng, L. Supersaturation-Controlled Shape Evolution of α-Fe2O3 Nanocrystals and Their Facet-Dependent Catalytic and Sensing Properties. ACS Appl. Mater. Interfaces 2014, 6, 12505–12514. [Google Scholar] [CrossRef]
- Ahmad, R.; Majhi, S.M.; Zhang, X.; Swager, T.M.; Salama, K.N. Recent Progress and Perspectives of Gas Sensors Based on Vertically Oriented ZnO Nanomaterials. Adv. Colloid Interface Sci. 2019, 270, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Dhakshinamoorthy, J.; Pullithadathil, B. New Insights Towards Electron Transport Mechanism of Highly Efficient P-Type CuO (111) Nanocuboids-Based H2S Gas Sensor. J. Phys. Chem. C 2016, 120, 4087–4096. [Google Scholar] [CrossRef]
- Yin, M.; Liu, S. Synthesis of CuO Microstructures with Controlled Shape and Size and Their Exposed Facets Induced Enhanced Ethanol Sensing Performance. Sens. Actuators B Chem. 2016, 227, 328–335. [Google Scholar] [CrossRef]
- Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors: A Review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Mirzaei, A.; Janghorban, K.; Hashemi, B.; Neri, G. Metal-Core@metal Oxide-Shell Nanomaterials for Gas-Sensing Applications: A Review. J. Nanoparticle Res. 2015, 17, 371. [Google Scholar] [CrossRef]
- Mirzaei, A.; Yousefi, H.R.; Falsafi, F.; Bonyani, M.; Lee, J.-H.; Kim, J.-H.; Kim, H.W.; Kim, S.S. An Overview on How Pd on Resistive-Based Nanomaterial Gas Sensors Can Enhance Response toward Hydrogen Gas. Int. J. Hydrogen Energy 2019, 44, 20552–20571. [Google Scholar] [CrossRef]
- Uddin, A.S.M.I.; Kumar, P.S.; Hassan, K.; Kim, H.C. Enhanced Sensing Performance of Bimetallic Al/Ag-CNF Network and Porous PDMS-Based Triboelectric Acetylene Gas Sensors in a High Humidity Atmosphere. Sens. Actuators B Chem. 2018, 258, 857–869. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, N.; Xu, Y.; Chen, S.; Willander, M.; Cao, X.; Wang, Z.L. Triboelectric Nanogenerators Based on Melamine and Self-Powered High-Sensitive Sensors for Melamine Detection. Adv. Funct. Mater. 2016, 26, 3029–3035. [Google Scholar] [CrossRef]
- Nielsen, G.D.; Larsen, S.T.; Wolkoff, P. Re-Evaluation of the WHO (2010) Formaldehyde Indoor Air Quality Guideline for Cancer Risk Assessment. Arch. Toxicol. 2017, 91, 35–61. [Google Scholar] [CrossRef]
- Yang, L.; Huangfu, C.; Wang, Y.; Qin, Y.; Qin, A.; Feng, L. Visual Detection of Aldehyde Gases Using a Silver-Loaded Paper-Based Colorimetric Sensor Array. Talanta 2024, 280, 126716. [Google Scholar] [CrossRef]
- Jeong, S.-Y.; Moon, Y.K.; Wang, J.; Lee, J.-H. Exclusive Detection of Volatile Aromatic Hydrocarbons Using Bilayer Oxide Chemiresistors with Catalytic Overlayers. Nat. Commun. 2023, 14, 233. [Google Scholar] [CrossRef]
- Zong, B.; Li, Q.; Chen, X.; Liu, C.; Li, L.; Ruan, J.; Mao, S. Highly Enhanced Gas Sensing Performance Using a 1T/2H Heterophase MoS2 Field-Effect Transistor at Room Temperature. ACS Appl. Mater. Interfaces 2020, 12, 50610–50618. [Google Scholar] [CrossRef]
- Xu, Q.; Zong, B.; Yang, Y.; Li, Q.; Mao, S. Black Phosphorus Quantum Dots Modified Monolayer Ti3C2Tx Nanosheet for Field-Effect Transistor Gas Sensor. Sens. Actuators B Chem. 2022, 373, 132696. [Google Scholar] [CrossRef]
- Ding, L.; Shao, P.; Yin, Y.; Ding, F. Synthesis of 2D Phosphorene: Current Status and Challenges. Adv. Funct. Mater. 2024, 34, 2316612. [Google Scholar] [CrossRef]
- Mohanty, B.; Kumari, S.; Yadav, P.; Kanoo, P.; Chakraborty, A. Metal-Organic Frameworks (MOFs) and MOF Composites Based Biosensors. Coord. Chem. Rev. 2024, 519, 216102. [Google Scholar] [CrossRef]
- Luppa, P.B.; Müller, C.; Schlichtiger, A.; Schlebusch, H. Point-of-Care Testing (POCT): Current Techniques and Future Perspectives. TrAC Trends Anal. Chem. 2011, 30, 887–898. [Google Scholar] [CrossRef]
- Su, Y.; Chen, G.; Chen, C.; Gong, Q.; Xie, G.; Yao, M.; Tai, H.; Jiang, Y.; Chen, J. Self-Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator. Adv. Mater. 2021, 33, 2101262. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, Y.; Zhang, Y.; Ding, X.; Zhang, H.; Cao, T.; Qu, Z.; Ren, J.; Li, L.; Guo, Z.; et al. Modular Assembly of MXene Frameworks for Noninvasive Disease Diagnosis via Urinary Volatiles. ACS Nano 2022, 16, 17376–17388. [Google Scholar] [CrossRef]
- Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile Organic Compounds of Lung Cancer and Possible Biochemical Pathways. Chem. Rev. 2012, 112, 5949–5966. [Google Scholar] [CrossRef]
- Zhang, S.; Bick, M.; Xiao, X.; Chen, G.; Nashalian, A.; Chen, J. Leveraging Triboelectric Nanogenerators for Bioengineering. Matter 2021, 4, 845–887. [Google Scholar] [CrossRef]
- Zhou, Q.; Geng, Z.; Yang, L.; Shen, B.; Kan, Z.; Qi, Y.; Hu, S.; Dong, B.; Bai, X.; Xu, L.; et al. A Wearable Healthcare Platform Integrated with Biomimetical Ions Conducted Metal–Organic Framework Composites for Gas and Strain Sensing in Non-Overlapping Mode. Adv. Sci. 2023, 10, 2207663. [Google Scholar] [CrossRef]
- Li, X.; Luo, C.; Fu, Q.; Zhou, C.; Ruelas, M.; Wang, Y.; He, J.; Wang, Y.; Zhang, Y.S.; Zhou, J. A Transparent, Wearable Fluorescent Mouthguard for High-Sensitive Visualization and Accurate Localization of Hidden Dental Lesion Sites. Adv. Mater. 2020, 32, 2000060. [Google Scholar] [CrossRef] [PubMed]
- Tseng, P.; Napier, B.; Garbarini, L.; Kaplan, D.L.; Omenetto, F.G. Functional, RF-Trilayer Sensors for Tooth-Mounted, Wireless Monitoring of the Oral Cavity and Food Consumption. Adv. Mater. 2018, 30, 1703257. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Wang, H.; Zhou, Y.; Zhang, Z.; Luo, Y.; Wu, Z.; Yang, L.; Xie, R.; Yang, B.; Tao, K.; et al. Self-Powered Switchable Gas-Humidity Difunctional Flexible Chemosensors Based on Smart Adaptable Hydrogel. Adv. Mater. 2025, 37, 2502369. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Dai, C.; Tian, X.; Wang, C.; Ren, Y.; Wang, L.; Yu, S.; Aheto, J.H.; Chang, X. Characterization of Volatile Flavor Profiles and Quantitative Assessment of Key Physicochemical Indicators for Fermented Bean Curd Using GC-IMS, E-Nose and Multi-Channel Colorimetric Sensor Array Combined with Chemometrics. Food Biosci. 2025, 69, 106879. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Aheto, J.H.; Ren, Y.; Wang, L.; Yu, S.; Wang, Y. Comparable Analysis of Flavor Compounds and Quality Assessment of Fermented Bean Curd Using HS-SPME-GC/MS and Colorimetric Sensor Array. Food Biosci. 2024, 60, 104291. [Google Scholar] [CrossRef]
- Ji, Z.; Zhu, J.; Deng, J.; Meng, F.; Jiang, H.; Chen, Q. High-Precision Identification of Zearalenone Contamination in Wheat Based on Olfactory Sensor Combined with near-Infrared Spectroscopy. J. Food Compos. Anal. 2025, 145, 107805. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Tang, Q.; Guo, Y.; Zhang, Z.; Zhang, W.; Zou, X.; Sun, Z. Molecularly Imprinted Electrochemical Sensor for Ethyl Carbamate Detection in Baijiu Based on “on-off” Nanozyme-Catalyzing Process. Food Chem. 2024, 453, 139626. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, K.; Kwadzokpui, B.A.; Han, E.; Guan, B.; Lin, H. Real-Time Monitoring and Rapid Determination of Pork Freshness Using a Colorimetric Sensor Array Based on Porphyrin and pH Indicator Ligand Combination. J. Agric. Food Chem. 2025, 73, 11327–11339. [Google Scholar] [CrossRef]
- Yin, L.; Jayan, H.; Cai, J.; El-Seedi, H.R.; Guo, Z.; Zou, X. Spoilage Monitoring and Early Warning for Apples in Storage Using Gas Sensors and Chemometrics. Foods 2023, 12, 2968. [Google Scholar] [CrossRef]
- Turlybekuly, A.; Shynybekov, Y.; Soltabayev, B.; Yergaliuly, G.; Mentbayeva, A. The Cross-Sensitivity of Chemiresistive Gas Sensors: Nature, Methods, and Peculiarities: A Systematic Review. ACS Sens. 2024, 9, 6358–6371. [Google Scholar] [CrossRef]
- Li, X.; Xie, W.; Bai, F.; Wang, J.; Zhou, X.; Gao, R.; Xu, X.; Zhao, Y. Influence of Thermal Processing on Flavor and Sensory Profile of Sturgeon Meat. Food Chem. 2022, 374, 131689. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Hu, X.; Huang, X.; Zhang, X.; Zou, X.; Shi, J. A Visible Colorimetric Sensor Array Based on Chemo-Responsive Dyes and Chemometric Algorithms for Real-Time Potato Quality Monitoring Systems. Food Chem. 2023, 405, 134717. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zareef, M.; Rong, Y.; Lin, H.; Chen, Q.; Ouyang, Q. Application of Colorimetric Sensor Array Coupled with Chemometric Methods for Monitoring the Freshness of Snakehead Fillets. Food Chem. 2024, 439, 138172. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, H.; Wang, F.; Adade, S.Y.-S.S.; Peng, T.; Chen, Q. Discrimination of Toxigenic and Non-Toxigenic Aspergillus Flavus in Wheat Based on Nanocomposite Colorimetric Sensor Array. Food Chem. 2024, 430, 137048. [Google Scholar] [CrossRef]
- Hassan, M.M.; Xu, Y.; He, P.; Zareef, M.; Li, H.; Chen, Q. Simultaneous Determination of Benzimidazole Fungicides in Food Using Signal Optimized Label-Free HAu/Ag NS-SERS Sensor. Food Chem. 2022, 397, 133755. [Google Scholar] [CrossRef] [PubMed]
- Gastaldello, A.; Giampieri, F.; De Giuseppe, R.; Grosso, G.; Baroni, L.; Battino, M. The Rise of Processed Meat Alternatives: A Narrative Review of the Manufacturing, Composition, Nutritional Profile and Health Effects of Newer Sources of Protein, and Their Place in Healthier Diets. Trends Food Sci. Technol. 2022, 127, 263–271. [Google Scholar] [CrossRef]
- Khan, S.; Monteiro, J.K.; Prasad, A.; Filipe, C.D.M.; Li, Y.; Didar, T.F. Material Breakthroughs in Smart Food Monitoring: Intelligent Packaging and On-Site Testing Technologies for Spoilage and Contamination Detection. Adv. Mater. 2024, 36, 2300875. [Google Scholar] [CrossRef]
- Huang, X.; Sun, W.; Li, Z.; Shi, J.; Zhang, N.; Zhang, Y.; Zhai, X.; Hu, X.; Zou, X. Hydrogen Sulfide Gas Sensing toward On-Site Monitoring of Chilled Meat Spoilage Based on Ratio-Type Fluorescent Probe. Food Chem. 2022, 396, 133654. [Google Scholar] [CrossRef]
- Stewart, K.; Limbu, S.; Nightingale, J.; Pagano, K.; Park, B.; Hong, S.; Lee, K.; Kwon, S.; Kim, J.-S. Molecular Understanding of a π-Conjugated Polymer/Solid-State Ionic Liquid Complex as a Highly Sensitive and Selective Gas Sensor. J. Mater. Chem. C 2020, 8, 15268–15276. [Google Scholar] [CrossRef]
- Andre, R.S.; Mercante, L.A.; Facure, M.H.M.; Sanfelice, R.C.; Fugikawa-Santos, L.; Swager, T.M.; Correa, D.S. Recent Progress in Amine Gas Sensors for Food Quality Monitoring: Novel Architectures for Sensing Materials and Systems. ACS Sens. 2022, 7, 2104–2131. [Google Scholar] [CrossRef]
- Gu, Y.; Huang, B.; Zhu, H. Smart Gas Sensors Toward Signal and Data Processing: A Review. IEEE Sens. J. 2025, 25, 2125–2140. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Shi, J.; Li, Z.; Huang, X.; Zou, X.; Tan, W.; Zhang, X.; Hu, X.; Wang, X.; et al. Impedimetric Aptasensor Based on Highly Porous Gold for Sensitive Detection of Acetamiprid in Fruits and Vegetables. Food Chem. 2020, 322, 126762. [Google Scholar] [CrossRef]
- Liang, N.; Hu, X.; Li, W.; Mwakosya, A.W.; Guo, Z.; Xu, Y.; Huang, X.; Li, Z.; Zhang, X.; Zou, X.; et al. Fluorescence and Colorimetric Dual-Mode Sensor for Visual Detection of Malathion in Cabbage Based on Carbon Quantum Dots and Gold Nanoparticles. Food Chem. 2021, 343, 128494. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Luo, Y.; Hong, Y.; Liu, Z.; Zhang, M.-X.; Gu, S.-X.; Yin, J. A Naphthimide-Based Ratiometric Fluorescent Probe for Selective and Visual Detection of Phosgene in Solution and the Gas Phase. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 269, 120789. [Google Scholar] [CrossRef]
- Xu, M.; Zhong, Y.; Hu, X.; Tao, Y.; Shen, Q.; Zhang, S.; Zhang, P.; Zhang, H.; Cheng, Z.; Sun, X. Detection of CWA Simulants by Electronic Nose Based on Low-Powered MEMS Gas Sensor Array. IEEE Sens. J. 2025, 25, 30361–30369. [Google Scholar] [CrossRef]
- Feng, W.; Liu, X.-J.; Xue, M.-J.; Song, Q.-H. Bifunctional Fluorescent Probes for the Detection of Mustard Gas and Phosgene. Anal. Chem. 2023, 95, 1755–1763. [Google Scholar] [CrossRef]
- Mahapatra, C. Recent Advances in Medical Gas Sensing with Artificial Intelligence–Enabled Technology. Med. Gas Res. 2025, 15, 318–326. [Google Scholar] [CrossRef]
- Zhao, X.; Du, L.; Xing, X.; Li, Z.; Tian, Y.; Chen, X.; Lang, X.; Liu, H.; Yang, D. Decorating Pd–Au Nanodots Around Porous In2O3 Nanocubes for Tolerant H2 Sensing Against Switching Response and H2S Poisoning. Small 2024, 20, 2311840. [Google Scholar] [CrossRef]
- Okafor, N.; Mathew, U.; Delaney, D. ProxySense: An Effective Approach for Gas Concentration Estimation Using Low-Cost IoT Sensors. In Proceedings of the 2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Niagara Falls, ON, Canada, 17–20 November 2022; pp. 347–356. [Google Scholar] [CrossRef]
- Saad Alotaibi, B.; Ibrahim Shema, A.; Umar Ibrahim, A.; Awad Abuhussain, M.; Abdulmalik, H.; Aminu Dodo, Y.; Atakara, C. Assimilation of 3D Printing, Artificial Intelligence (AI) and Internet of Things (IoT) for the Construction of Eco-Friendly Intelligent Homes: An Explorative Review. Heliyon 2024, 10, e36846. [Google Scholar] [CrossRef]
- Chavhan, S.; Gupta, D.; Gochhayat, S.P.; Chandana, B.N.; Khanna, A.; Shankar, K.; Rodrigues, J.J.P.C. Edge Computing AI-IoT Integrated Energy-Efficient Intelligent Transportation System for Smart Cities. ACM Trans. Internet Technol. 2022, 22, 1–18. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, M.; Xu, B.; Guo, Z. Intelligent Quality Control of Gelatinous Polysaccharide-Based Fresh Products during Cold Chain Logistics: A Review. Food Biosci. 2024, 62, 105081. [Google Scholar] [CrossRef]
- Tchabo, W.; Ma, Y.; Kwaw, E.; Zhang, H.; Xiao, L.; Tahir, H.E. Aroma Profile and Sensory Characteristics of a Sulfur Dioxide-Free Mulberry (Morus nigra) Wine Subjected to Non-Thermal Accelerating Aging Techniques. Food Chem. 2017, 232, 89–97. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, W.; Su, J.; Li, H.; Ouyang, Q.; Zhao, J. Nondestructively Sensing of Total Viable Count (TVC) in Chicken Using an Artificial Olfaction System Based Colorimetric Sensor Array. J. Food Eng. 2016, 168, 259–266. [Google Scholar] [CrossRef]
- Zhang, X.; Bian, F.; Wang, Y.; Hu, L.; Yang, N.; Mao, H. A Method for Capture and Detection of Crop Airborne Disease Spores Based on Microfluidic Chips and Micro Raman Spectroscopy. Foods 2022, 11, 3462. [Google Scholar] [CrossRef]
- García, L.; Garcia-Sanchez, A.-J.; Asorey-Cacheda, R.; Garcia-Haro, J.; Zúñiga-Cañón, C.-L. Smart Air Quality Monitoring IoT-Based Infrastructure for Industrial Environments. Sensors 2022, 22, 9221. [Google Scholar] [CrossRef]
- Aljofi, H.E.; Bannan, T.J.; Flynn, M.; Evans, J.; Topping, D.; Matthews, E.; Diez, S.; Edwards, P.; Coe, H.; Brison, D.R.; et al. Study of the Suitability of a Personal Exposure Monitor to Assess Air Quality. Atmosphere 2024, 15, 315. [Google Scholar] [CrossRef]
- Azman, F.I.; Saleh, N.L.; Hashim, F.; Sali, A.; Ali, A.M.; Noor, A.S.M. An IoT-Based Hygiene Monitoring System in the Restroom. IEEE Access 2025, 13, 119348–119361. [Google Scholar] [CrossRef]
- Shi, B.; Sreeram, V.; Zhao, D.; Duan, S.; Jiang, J. A Wireless Sensor Network-Based Monitoring System for Freshwater Fishpond Aquaculture. Biosyst. Eng. 2018, 172, 57–66. [Google Scholar] [CrossRef]
- Liang, Q.; Tang, P.; Li, H.; Zhang, Z.; Pang, Y.; Zhang, Y. Propagation Characteristics of LoRa Signal at 433 MHz Channel in Tea Plantations. Appl. Eng. Agric. 2024, 40, 273–283. [Google Scholar] [CrossRef]
- Zhu, X.; Chikangaise, P.; Shi, W.; Chen, W.-H.; Yuan, S. Review of Intelligent Sprinkler Irrigation Technologies for Remote Autonomous System. Int. J. Agric. Biol. Eng. 2018, 11, 23–30. [Google Scholar] [CrossRef]
- Wang, B.; Yang, D.; Chang, Z.; Zhang, R.; Dai, J.; Fang, Y. Wearable Bioelectronic Masks for Wireless Detection of Respiratory Infectious Diseases by Gaseous Media. Matter 2022, 5, 4347–4362. [Google Scholar] [CrossRef] [PubMed]
- Hassan, K.; Tung, T.T.; Yap, P.L.; Rastin, H.; Stanley, N.; Nine, M.J.; Losic, D. Fractal Design for Advancing the Performance of Chemoresistive Sensors. ACS Sens. 2021, 6, 3685–3695. [Google Scholar] [CrossRef]
- Vadera, N.; Dhanekar, S. Classification and Prediction of VOCs Using an IoT-Enabled Electronic Nose System-Based Lab Prototype for Breath Sensing Applications. ACS Sens. 2025, 10, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Du, H.; Cha, Y.L.; Lee, D.; Kim, W.; Feyzbar-Khalkhali-Nejad, F.; Oh, T.-S.; Zhang, X.; Kim, D.-J. A Wearable Mask Sensor Based on Polyaniline/CNT Nanocomposites for Monitoring Ammonia Gas and Human Breathing. Sens. Actuators B Chem. 2023, 375, 132858. [Google Scholar] [CrossRef]

| Transduction Type | Advantages | Disadvantages |
|---|---|---|
| Chemiresistor | Simple configuration and working principle. | It is susceptible to environmental disturbances and is limited by a single output type (such as resistance or current), high operating temperature, cross-sensitivity, aging, and drift. |
| FET | It has multiple types of output signals, such as drain-source current, threshold voltage, and sub-threshold swing. | It is susceptible to environmental disturbances, cross-sensitive to gases with highly similar structures and properties, and has a poor recovery rate and long-term stability. |
| Capacitor | Additional measurement capabilities over chemical resistors allow for better selectivity and reliability. | It is easily affected by environmental cleanliness, edge effects, parasitic capacitance, etc. |
| Inductor | It can be magnetically coupled with an external coil for wireless detection. | The circuit configuration is relatively complex. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Peng, Q.; Xie, Y.; Chen, Y. Intelligent Gas Sensors: From Mechanism to Applications. Sensors 2025, 25, 6321. https://doi.org/10.3390/s25206321
Wei J, Peng Q, Xie Y, Chen Y. Intelligent Gas Sensors: From Mechanism to Applications. Sensors. 2025; 25(20):6321. https://doi.org/10.3390/s25206321
Chicago/Turabian StyleWei, Jianghong, Qing Peng, Yuee Xie, and Yuanping Chen. 2025. "Intelligent Gas Sensors: From Mechanism to Applications" Sensors 25, no. 20: 6321. https://doi.org/10.3390/s25206321
APA StyleWei, J., Peng, Q., Xie, Y., & Chen, Y. (2025). Intelligent Gas Sensors: From Mechanism to Applications. Sensors, 25(20), 6321. https://doi.org/10.3390/s25206321

