A Deep Learning Approach for Mental Fatigue State Assessment
Abstract
:1. Introduction
2. Methods
2.1. Experimental Setup
2.2. Data Preprocessing
2.3. Deep Neural Network
3. Results
3.1. Preparation
3.2. Dataset
3.3. Quantitative Comparison
3.4. Ablation Study
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barber-Westin, S.D.; Noyes, F.R. Effect of fatigue protocols on lower limb neuromuscular function and implications for anterior cruciate ligament injury prevention training: A systematic review. Am. J. Sports Med. 2017, 45, 3388–3396. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.; Meeusen, R.; Thompson, K.G.; Keegan, R.; Rattray, B. Mental fatigue impairs endurance performance: A physiological explanation. Sports Med. 2018, 48, 2041–2051. [Google Scholar] [CrossRef]
- Djaoui, L.; Haddad, M.; Chamari, K.; Dellal, A. Monitoring training load and fatigue in soccer players with physiological markers. Physiol. Behav. 2017, 181, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, J.; Marcora, S.; De Pauw, K.; Bailey, S.; Meeusen, R.; Roelands, B. The effects of mental fatigue on physical performance: A systematic review. Sports Med. 2017, 47, 1569–1588. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Thompson, C.; Marcora, S.M.; Skorski, S.; Meyer, T.; Coutts, A.J. Mental fatigue and soccer: Current knowledge and future directions. Sports Med. 2018, 48, 1525–1532. [Google Scholar] [CrossRef]
- Zhang, Z.; Ning, H.; Zhou, F. A systematic survey of driving fatigue monitoring. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19999–20020. [Google Scholar] [CrossRef]
- Reynoso-Sánchez, L.F.; Pérez-Verduzco, G.; Celestino-Sánchez, M.Á.; López-Walle, J.M.; Zamarripa, J.; Rangel-Colmenero, B.R.; Hernández-Cruz, G. Competitive recovery–stress and mood states in mexican youth athletes. Front. Psychol. 2021, 11, 627828. [Google Scholar] [CrossRef] [PubMed]
- Qi, P.; Ru, H.; Gao, L.; Zhang, X.; Zhou, T.; Tian, Y.; Sun, Y. Neural mechanisms of mental fatigue revisited: New insights from the brain connectome. Engineering 2019, 5, 276–286. [Google Scholar] [CrossRef]
- Kodithuwakku Arachchige, S.N.; Burch, R.F., V; Chander, H.; Turner, A.J.; Knight, A.C. The use of wearable devices in cognitive fatigue: Current trends and future intentions. Theor. Issues Ergon. Sci. 2022, 23, 374–386. [Google Scholar] [CrossRef]
- Winter, S.; Gordon, S.; Watt, K. Effects of fatigue on kinematics and kinetics during overground running: A systematic review. J. Sports Med. Phys. Fit. 2016, 57, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Mizuno, K.; Yamaguti, K.; Kuratsune, H.; Fujii, A.; Baba, H.; Watanabe, Y. Autonomic nervous alterations associated with daily level of fatigue. Behav. Brain Funct. 2011, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Penna, E.M.; Wanner, S.P.; Campos, B.T.; Quinan, G.R.; Mendes, T.T.; Smith, M.R.; Prado, L.S. Mental fatigue impairs physical performance in young swimmers. Pediatr. Exerc. Sci. 2018, 30, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Pires, F.O.; Silva-Júnior, F.L.; Brietzke, C.; Franco-Alvarenga, P.E.; Pinheiro, F.A.; de França, N.M.; Santos, T.M. Mental fatigue alters cortical activation and psychological responses, impairing performance in a distance-based cycling trial. Front. Physiol. 2018, 9, 227. [Google Scholar] [CrossRef]
- MacMahon, C.; Schücker, L.; Hagemann, N.; Strauss, B. Cognitive fatigue effects on physical performance during running. J. Sport Exerc. Psychol. 2014, 36, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Pageaux, B.; Lepers, R.; Dietz, K.C.; Marcora, S.M. Response inhibition impairs subsequent self-paced endurance performance. Eur. J. Appl. Physiol. 2014, 114, 1095–1105. [Google Scholar] [CrossRef]
- Chitti, S.; Kumar, J.T.; Kumar, V.S. EEG signal feature selection algorithm and support vector machine model in patient’s fatigue recognition. Arab. J. Sci. Eng. 2023, 48, 11135–11141. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Zhang, C.; He, F.; Zhao, X.; Qi, H.; Zhou, P.; Ming, D. How physical activities affect mental fatigue based on EEG energy, connectivity, and complexity. Front. Neurol. 2018, 9, 915. [Google Scholar] [CrossRef] [PubMed]
- Dallaway, N.; Lucas, S.J.; Ring, C. Cognitive tasks elicit mental fatigue and impair subsequent physical task endurance: Effects of task duration and type. Psychophysiology 2022, 59, e14126. [Google Scholar] [CrossRef]
- Manning, R.T. The serial sevens test. Arch. Intern. Med. 1982, 142, 1192. [Google Scholar] [CrossRef]
- Parvaresh-Rizi, M.; Ghadirivasfi, M.; Babaei, S.; Zafarghandi, M.B.S.; Fattahi, A.; Habibi, S.A.; Arezoomandan, R. Psychopathological and neuropsychological outcomes of deep brain stimulation for severe-treatment-resistant obsessive-compulsive disorder: An open-label case series. J. Clin. Neurosci. 2022, 98, 229–234. [Google Scholar] [CrossRef]
- Butkevičiūtė, E.; Michalkovič, A.; Bikulčienė, L. Ecg signal features classification for the mental fatigue recognition. Mathematics 2022, 10, 3395. [Google Scholar] [CrossRef]
- Koch, S.; Holland, R.W.; Hengstler, M.; van Knippenberg, A.F.M. Body locomotion as regulatory process: Stepping backward enhances cognitive control. Psychol. Sci. 2009, 20, 549–550. [Google Scholar] [CrossRef]
- Jostmann, N.B.; Koole, S.L. On the regulation of cognitive control: Action orientation moderates the impact of high demands in stroop interference tasks. J. Exp. Psychol. Gen. 2007, 136, 593. [Google Scholar] [CrossRef] [PubMed]
- Shigihara, Y.; Tanaka, M.; Ishii, A.; Tajima, S.; Kanai, E.; Funakura, M.; Watanabe, Y. Two different types of mental fatigue produce different styles of task performance. Neurol. Psychiatry Brain Res. 2013, 19, 5–11. [Google Scholar] [CrossRef]
- Hakim, H.; Khemiri, A.; Chortane, O.G.; Boukari, S.; Chortane, S.G.; Bianco, A.; Muscella, A. Mental fatigue effects on the produced perception of effort and its impact on subsequent physical performances. Int. J. Environ. Res. Public Health 2022, 19, 10973. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.P.; Marino, F.E. Thirst perception exacerbates objective mental fatigue. Neuropsychologia 2021, 150, 107686. [Google Scholar] [CrossRef] [PubMed]
- Díaz-García, J.; Clemente-Suárez, V.J.; Fuentes-García, J.P.; Villafaina, S. Combining hiit plus cognitive task increased mental fatigue but not physical workload in tennis players. Appl. Sci. 2023, 13, 7046. [Google Scholar] [CrossRef]
- Batista, M.M.; Paludo, A.C.; MP, D.S.; Martins, M.V.; Pauli, P.H.; Dal’maz, G.; Tartaruga, M.P. Effect of mental fatigue on performance, perceptual and physiological responses in orienteering athletes. J. Sports Med. Phys. Fit. 2021, 61, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wu, S.; Ping, J.; Xu, Z.; Chu, H. EEG driving fatigue detection with PDC-based brain functional network. IEEE Sens. J. 2021, 21, 10811–10823. [Google Scholar] [CrossRef]
- Huang, J.; Chen, B.; Yao, B.; He, W. ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network. IEEE Access 2019, 7, 92871–92880. [Google Scholar] [CrossRef]
- Kamath, C. ECG beat classification using features extracted from Teager energy functions in time and frequency domains. IET Signal Process. 2011, 5, 575–581. [Google Scholar] [CrossRef]
- Azevedo, R.D.A.; Cruz, R.; Couto, P.; Silva-Cavalcante, M.D.; Boari, D.; Lima-Silva, A.E.; Bertuzzi, R. Characterization of performance fatigability during a self-paced exercise. J. Appl. Physiol. 2019, 127, 838–846. [Google Scholar] [CrossRef]
- Suviseshamuthu, E.S.; Shenoy Handiru, V.; Allexandre, D.; Hoxha, A.; Saleh, S.; Yue, G.H. EEG-based spectral analysis showing brainwave changes related to modulating progressive fatigue during a prolonged intermittent motor task. Front. Hum. Neurosci. 2022, 16, 770053. [Google Scholar] [CrossRef]
- Chiarelli, A.M.; Bianco, F.; Perpetuini, D.; Bucciarelli, V.; Filippini, C.; Cardone, D.; Merla, A. Data-driven assessment of cardiovascular ageing through multisite photoplethysmography and electrocardiography. Med. Eng. Phys. 2019, 73, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.J.; Fedewa, M.V.; Winchester, L.J.; MacDonald, H.V.; Wind, S.A.; Esco, M.R. Validity of smartphone heart rate variability pre-and post-resistance exercise. Sensors 2020, 20, 5738. [Google Scholar] [CrossRef] [PubMed]
- Sherwood, L.; Kell, R.T.; Ward, C. Human Physiology: From Cells to Systems, 9th ed.; Cengage Learning: Boston, MA, USA, 2016. [Google Scholar]
- Li, H.; Wang, D.; Chen, J.; Luo, X.; Li, J.; Xing, X. Pre-service fatigue screening for construction workers through wearable EEG-based signal spectral analysis. Autom. Constr. 2019, 106, 102851. [Google Scholar] [CrossRef]
- Yang, Z.; Ren, H. Feature extraction and simulation of EEG signals during exercise-induced fatigue. IEEE Access 2019, 7, 46389–46398. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, M.; Liu, J.; Zheng, C. Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator. Accid. Anal. Prev. 2012, 45, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Bin Heyat, M.B.; Akhtar, F.; Abbas, S.J.; Al-Sarem, M.; Alqarafi, A.; Stalin, A.; Wu, K. Wearable flexible electronics based cardiac electrode for researcher mental stress detection system using machine learning models on single lead electrocardiogram signal. Biosensors 2022, 12, 427. [Google Scholar] [CrossRef]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Turakhia, M.P.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65–69. [Google Scholar] [CrossRef]
- Malik, J.; Devecioglu, O.C.; Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-time patient-specific ECG classification by 1D self-operational neural networks. IEEE Trans. Biomed. Eng. 2021, 69, 1788–1801. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.H.; Ribeiro, M.H.; Paixão, G.M.; Oliveira, D.M.; Gomes, P.R.; Canazart, J.A.; Ribeiro, A.L.P. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat. Commun. 2020, 11, 1760. [Google Scholar] [CrossRef]
- Oh, S.L.; Ng, E.Y.; San Tan, R.; Acharya, U.R. Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types. Comput. Biol. Med. 2019, 105, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Taji, B.; Chan, A.D.; Shirmohammadi, S. False alarm reduction in atrial fibrillation detection using deep belief networks. IEEE Trans. Instrum. Meas. 2017, 67, 1124–1131. [Google Scholar] [CrossRef]
- Liu, M.; Kim, Y. Classification of heart diseases based on ECG signals using long short-term memory. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018. [Google Scholar]
- Wang, G.; Zhang, C.; Liu, Y.; Yang, H.; Fu, D.; Wang, H.; Zhang, P. A global and updatable ECG beat classification system based on recurrent neural networks and active learning. Inf. Sci. 2019, 501, 523–542. [Google Scholar] [CrossRef]
- Han, S.; Wu, Q.; Sun, L.; Qiu, X.; Ren, H.; Lu, Z. Recognition of fatigue status of pilots based on deep contractive auto-encoding network. J. Biomed. Eng. 2018, 35, 443–451. [Google Scholar]
- Jeong, J.H.; Yu, B.W.; Lee, D.H.; Lee, S.W. Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals. Brain Sci. 2019, 9, 348. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Jun, S.; Cho, Y.W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep learning in medical imaging: General overview. Korean J. Radiol. 2017, 18, 570–584. [Google Scholar] [CrossRef]
- Ebrahimi, Z.; Loni, M.; Daneshtalab, M.; Gharehbaghi, A. A review on deep learning methods for ECG arrhythmia classification. Expert Syst. Appl. X 2020, 7, 100033. [Google Scholar] [CrossRef]
- Le, M.D.; Rathour, V.S.; Truong, Q.S.; Mai, Q.; Brijesh, P.; Le, N. Multi-module recurrent convolutional neural network with transformer encoder for ECG arrhythmia classification. In Proceedings of the 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), Athens, Greece, 27–30 July 2021. [Google Scholar]
- Rashid, M.; Mustafa, M.; Sulaiman, N.; Abdullah, N.R.H.; Samad, R. Random subspace K-NN based ensemble classifier for driver fatigue detection utilizing selected EEG channels. Trait. Signal 2021, 38, 1259–1270. [Google Scholar] [CrossRef]
- Caldwell, Y.T.; Steffen, P.R. Adding HRV biofeedback to psychotherapy increases heart rate variability and improves the treatment of major depressive disorder. Int. J. Psychophysiol. 2018, 131, 96–101. [Google Scholar] [CrossRef]
- Smith, M.R.; Chai, R.; Nguyen, H.T.; Marcora, S.M.; Coutts, A.J. Comparing the effects of three cognitive tasks on indicators of mental fatigue. J. Psychol. 2019, 153, 759–783. [Google Scholar] [CrossRef]
- Díaz-García, J.; González-Ponce, I.; Ponce-Bordón, J.C.; López-Gajardo, M.A.; Ramírez-Bravo, I.; Rubio-Morales, A.; García-Calvo, T. Mental Load and Fatigue Assessment Instruments: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 419. [Google Scholar] [CrossRef]
- Mandala, S.; Pratiwi Wibowo, A.R.; Adiwijaya; Suyanto; Zahid, M.S.M.; Rizal, A. The effects of Daubechies wavelet basis function (DWBF) and decomposition level on the performance of artificial intelligence-based atrial fibrillation (AF) detection based on electrocardiogram (ECG) signals. Appl. Sci. 2023, 13, 3036. [Google Scholar] [CrossRef]
- Tun, H.M.; Moe, W.K.; Naing, Z.M. Analysis on ECG data compression using wavelet transform technique. Int. J. Psychol. Brain Sci. 2017, 2, 127. [Google Scholar] [CrossRef]
- Liu, T.; Si, Y.; Wen, D.; Zang, M.; Lang, L. Dictionary learning for VQ feature extraction in ECG beats classification. Expert Syst. Appl. 2016, 53, 129–137. [Google Scholar] [CrossRef]
F1 | Accuracy (%) | |
---|---|---|
SVM | 0.38 | 55.11 |
RF | 0.57 | 62.26 |
CNNs | 0.54 | 69.02 |
LSTM | 0.87 | 86.67 |
Bi-LSTM | 0.90 | 90.20 |
Ours | 0.95 | 95.29 |
Models | F1 | Accuracy (%) |
---|---|---|
S | 0.69 | 69.41 |
S + P | 0.7 | 71.37 |
T | 0.89 | 89.41 |
T + S | 0.92 | 92.54 |
T + P | 0.93 | 93.33 |
T + S + P (Ours) | 0.95 | 95.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Dong, L.; Sun, G.; Zhou, Z. A Deep Learning Approach for Mental Fatigue State Assessment. Sensors 2025, 25, 555. https://doi.org/10.3390/s25020555
Fan J, Dong L, Sun G, Zhou Z. A Deep Learning Approach for Mental Fatigue State Assessment. Sensors. 2025; 25(2):555. https://doi.org/10.3390/s25020555
Chicago/Turabian StyleFan, Jiaxing, Lin Dong, Gang Sun, and Zhize Zhou. 2025. "A Deep Learning Approach for Mental Fatigue State Assessment" Sensors 25, no. 2: 555. https://doi.org/10.3390/s25020555
APA StyleFan, J., Dong, L., Sun, G., & Zhou, Z. (2025). A Deep Learning Approach for Mental Fatigue State Assessment. Sensors, 25(2), 555. https://doi.org/10.3390/s25020555