Temperature Hysteresis Calibration Method of MEMS Accelerometer
Abstract
1. Introduction
2. Relationship Between Internal Temperature Gradient and External Temperature Change Rate
2.1. Transient Heat Transfer Characteristics of MEMS Sensors
- Heat conduction model, incorporating the thermal conductivity of materials such as silicon, metal oxides, and other MEMS structural or packaging materials including wires and PCB substrates attached to the MEMS cell;
- Convection model, governed by Newton’s law of cooling, considering the convective heat transfer coefficient , which may be affected by residual gases remaining from the fabrication process;
- Thermal radiation modeled using the Stefan-Boltzmann law.
2.2. Correlation of Temperature Hysteresis with External Temperature Change Rate
3. Hysteresis Calibration Model
4. Performance Test Results After Temperature Hysteresis Calibration
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MEMS | Micro-electromechanical system |
| RMSE | Root Mean Square Error |
| VRW | Velocity Random Walk |
References
- Meng, X.; Tan, H.; Yan, P.; Zheng, Q.; Chen, G.; Jiang, J. A GNSS/INS Integrated Navigation Compensation Method Based on CNN-GRU + IRAKF Hybrid Model during GNSS Outages. IEEE Trans. Instrum. Meas. 2024, 73, 1–15. [Google Scholar] [CrossRef]
- EI-Sheimy, N.; Li, Y. Indoor navigation: State of the art and future trends. Satell. Navig. 2021, 2, 7. [Google Scholar] [CrossRef]
- Ru, X.; Gu, N.; Shang, H.; Zhang, H. MEMS inertial sensor calibration technology: Current status and future trends. Micromachines 2022, 13, 879. [Google Scholar] [CrossRef] [PubMed]
- Al Jlailaty, H.; Celik, A.; Mansour, M.M.; Eltawil, A.M. IMU hand calibration for low-cost MEMS inertial sensors. IEEE Trans. Instrum. Meas. 2023, 72, 1–16. [Google Scholar] [CrossRef]
- Wang, L.; Tang, H.; Zhang, T.; Chen, Q.; Shi, J.; Niu, X. Improving the navigation performance of the MEMS IMU Array by precise calibration. IEEE Sens. J. 2021, 21, 26050–26058. [Google Scholar] [CrossRef]
- Titterton, D.; Weston, J.L. Strapdown Inertial Navigation Technology, 2nd ed.; IET: Herts, UK, 2004; Volume 17. [Google Scholar]
- Yuan, B.; Tang, Z.; Zhang, P.; Lv, F. Thermal calibration of triaxial accelerometer for tilt measurement. Sensors 2023, 23, 2105. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Xu, X.; Xu, D.; Zou, Z.; Zhao, H. Low-cost efficient thermal calibration scheme for MEMS triaxial accelerometer. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Zotov, S. A Detailed journey from Tactical to High-End Navigation-Grade MEMS Accelerometers at EMCORE. In Proceedings of the 2024 DGON Inertial Sensors and Applications (ISA), Braunschweig, Germany, 22–23 October 2024; pp. 1–19. [Google Scholar]
- Shin, D.D.; Chen, Y.; Flader, I.B.; Kenny, T.W. Epitaxially encapsulated resonant accelerometer with an on-chip micro-oven. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 595–598. [Google Scholar]
- Ortiz, L.C.; Flader, I.B.; Vukasin, G.D.; Gerrard, D.D.; Chandorkar, S.A.; Rodriguez, J.; Shin, D.D.; Kwon, R.; Heinz, D.B.; Chen, Y.; et al. Thermal effect of ovenized clocks on episeal encapsulated inertial measurement units. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 January 2018; pp. 980–983. [Google Scholar]
- Wang, S.; Ma, Y.; Xu, W.; Liu, Y.; Han, F. Temperature compensation of MEMS resonant accelerometers with an on-chip platinum film thermometer. J. Micromech. Microeng. 2023, 33, 075004. [Google Scholar] [CrossRef]
- Jing, Z.; Qiu, A.; Shi, Q.; Bian, Y.; Xia, G. Research on temperature compensation method of silicon resonant accelerometer based on integrated temperature measurement resonator. In Proceedings of the 2015 2nd IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Qingdao, China, 16–18 July 2015; Volume 3, pp. 1577–1581. [Google Scholar]
- Zhang, J.; Wu, T.; Liu, Y.; Lin, C.; Su, Y. Thermal stress resistance for the structure of MEMS-based silicon differential resonant accelerometer. IEEE Sens. J. 2023, 29, 9146–9157. [Google Scholar] [CrossRef]
- Honeywell International Inc. (USA). HG1930 Inertial Measurement Unit. 2018. Available online: https://aerospace.honeywell.com/content/dam/aerobt/en/documents/learn/products/sensors/brochures/N61-1637-000-000-HG1930InertialMeasurementUnit-bro.pdf (accessed on 18 December 2018).
- Microinfinity Co., Ltd. (South Korea). IMU__XNI50_Brochure_Ver1.6. 2023. Available online: http://www.minfinity.com/brochure/IMU_XNI50_Brochure_Ver1.6.pdf (accessed on 1 January 2023).
- Nguyen, C.T.C. Micromechanical resonators for oscillators and filters. In Proceedings of the 1995 IEEE Ultrasonics Symposium Proceedings—An International Symposium, Seattle, WA, USA, 7–10 November 1995; Volume 1, pp. 489–499. [Google Scholar]
- Cahill, D.G.; Goodson, K.; Majumdar, A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Mass Transf. 2002, 124, 223–241. [Google Scholar] [CrossRef]
- Bergman, T.L. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Analog Devices (USA). AD590 Datasheet. 2013. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/ad590.pdf (accessed on 1 February 2020).
- Acutronic Switzerland Ltd. (Switzerland). Datasheet AC3367 TCC. Available online: https://www.crisel.it/wp-content/uploads/AC3367-TCC.pdf (accessed on 16 September 2024).
- Acutronic Switzerland Ltd. (Switzerland). Datasheet 1 Axis New AC1120Si V1.0 A4. Available online: https://assets.ctfassets.net/4yshkjk9i7lb/4acX9cg2EHrZgPrvNUj4cP/6ba4f079f91ca3d6f1c718917cf77af7/Datasheet_1_axis_new_AC1120Si_V1.0_A4.pdf (accessed on 14 February 2022).
- IEEE Std 1293-2018; IEEE Standard Specification Format Guide and Test Procedure for Linear Single-Axis, Nongyroscopic Accelerometers. IEEE: Piscataway, NJ, USA, 2019; pp. 1–271, Revision of IEEE Std 1293-1998.
- Hopkins, R.; Miola, J.; Sawyer, W.; Setterlund, R.; Dow, B. The silicon oscillating accelerometer: A high-performance MEMS accelerometer for precision navigation and strategic guidance applications. In Proceedings of the 2005 National Technical Meeting of the Institute of Navigation, San Diego, CA, USA, 24–26 January 2005; pp. 970–979. [Google Scholar]
- Zotov, S.; Srivastava, A.; Kwon, K.; Frank, J.; Parco, E.; Williams, M.; Shtigluz, S.; Lyons, K.; Frazee, M.; Hoyh, D.; et al. In-run navigation grade quartz MEMS-based IMU. In Proceedings of the 2020 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Hiroshima, Japan, 23–26 March 2020; pp. 1–4. [Google Scholar]
- El-Sheimy, N.; Hou, H.; Niu, X. Analysis and modeling of inertial sensors using Allan variance. IEEE Trans. Instrum. Meas. 2008, 57, 140–149. [Google Scholar] [CrossRef]








| Test No. | List | Operating Temperature | Sensor #4 | Sensor #5 | Sensor #6 | ||||
|---|---|---|---|---|---|---|---|---|---|
| Before Calibration | After Calibration | Before Calibration | After Calibration | Before Calibration | After Calibration | ||||
| 1 | Temperature Hysteresis [μg] | −35 °C~+75 °C | 385.89 | 254.96 | 394.81 | 220.67 | 453.12 | 167.02 | |
| 2 | Repeatability | Bias [μg] | −32 °C | 118.6 | 104 | 20.8 | 21 | 27 | 27.2 |
| +20 °C | 10.5 | 4.9 | 12 | 11.8 | 3.2 | 3.1 | |||
| +68 °C | 63.8 | 54.6 | 14.1 | 13.3 | 4.6 | 4.6 | |||
| Scale Factor | −32 °C | 74.1 | 73.3 | 7.3 | 7.3 | 15.1 | 15 | ||
| +20 °C | 12.5 | 7.1 | 10.2 | 10.2 | 3.6 | 3.4 | |||
| +68 °C | 44.8 | 39.1 | 2.7 | 3.1 | 2.1 | 1.8 | |||
| 3 | Operation Range | Nonlinearity [ppm] | +25 °C | 681.1 | 687.69 | 567.12 | 567.89 | 252.89 | 254.04 |
| 4 | Inrun | VRW [μg√Hz] | +25 °C | 7.834 | 7.936 | 5.63 | 5.85 | 5.38 | 6.72 |
| Bias Instability [μg] | +25 °C | 0.629 | 0.636 | 1.61 | 1.65 | 1.07 | 1.17 | ||
| Test No. | List | Operating Temperature | Type 1 (≤500 μg, 32 Sensors) | Type 2 (≥500 μg, 16 Sensors) | |||||
|---|---|---|---|---|---|---|---|---|---|
| Before Calibration Mean (1σ) | After Calibration Mean (1σ) | Improvement Rate [%] | After Calibration Mean (1σ) | Before Calibration Mean (1σ) | Improvement Rate [%] | ||||
| 1 | Temperature Hysteresis [μg] | −35 °C~+75 °C | 393.0 (68.2) | 226.3 (60.7) | 42.4 | 644.9 (118.6) | 357.2 (109.8) | 44.6 | |
| 2 | Repeatability | Bias [μg] | −32 °C | 41.3 (39.5) | 40.7 (37.2) | 1.5 | 46.1 (23.3) | 45.4 (23.1) | 0.9 |
| +20 °C | 10.8 (8.0) | 10.7 (8.3) | 0.6 | 15.7 (13.7) | 15.6 (13.7) | 0.7 | |||
| +68 °C | 32.0 (32.1) | 31.6 (32.3) | 1.3 | 24.5 (25.4) | 23.8 (25.1) | 3.1 | |||
| Scale Factor | −32 °C | 13.1 (23.5) | 13.0 (23.0) | 0.8 | 12.4 (11.9) | 13.5 (11.9) | −8.8 | ||
| +20 °C | 4.6 (3.4) | 4.2 (2.9) | 7.7 | 3.5 (2.2) | 3.4 (2.2) | 1.0 | |||
| +68 °C | 7.1 (11.6) | 7.0 (10.3) | 1.7 | 3.8 (1.8) | 4.0 (1.9) | −5.7 | |||
| 3 | Operation Range | Nonlinearity [ppm] | +25 °C | 417.2 (203.4) | 418.0 (204.6) | −0.2 | 373.1 (164.6) | 372.5 (164.2) | 0.2 |
| 4 | Inrun | VRW [μg√Hz] | +25 °C | 6.1 (1.6) | 6.3 (1.6) | −2.5 | 6.9 (1.9) | 7.3 (1.9) | −5.1 |
| Bias Instability [μg] | +25 °C | 1.5 (0.5) | 1.6 (0.5) | −2.6 | 1.6 (0.4) | 1.8 (0.5) | −11.3 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.J.; Jung, H.K. Temperature Hysteresis Calibration Method of MEMS Accelerometer. Sensors 2025, 25, 6131. https://doi.org/10.3390/s25196131
Kim HJ, Jung HK. Temperature Hysteresis Calibration Method of MEMS Accelerometer. Sensors. 2025; 25(19):6131. https://doi.org/10.3390/s25196131
Chicago/Turabian StyleKim, Hak Ju, and Hyoung Kyoon Jung. 2025. "Temperature Hysteresis Calibration Method of MEMS Accelerometer" Sensors 25, no. 19: 6131. https://doi.org/10.3390/s25196131
APA StyleKim, H. J., & Jung, H. K. (2025). Temperature Hysteresis Calibration Method of MEMS Accelerometer. Sensors, 25(19), 6131. https://doi.org/10.3390/s25196131

