Effect of Speed Threshold Approaches for Evaluation of External Load in Male Basketball Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Variables
2.4. Procedures
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Activity-Based: Training vs. Competition
4.2. Stages of the Season
4.3. Strengths and Limitations
4.4. Future Lines of Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EL | External Load |
LMM | Linear mixed model |
LPS | Local positioning system |
References
- Impellizzeri, F.M.; Marcora, S.M.; Coutts, A.J. Internal and External Training Load: 15 Years on. Int. J. Sports Physiol. Perform. 2019, 14, 270–273. [Google Scholar] [CrossRef]
- Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring athlete training loads: Consensus statement. Int. J. Sports Physiol. Perform. 2017, 12, 161–170. [Google Scholar] [CrossRef]
- Vanrenterghem, J.; Nedergaard, N.J.; Robinson, M.A.; Drust, B. Training Load Monitoring in Team Sports: A Novel Framework Separating Physiological and Biomechanical Load-Adaptation Pathways. Sports Med. 2017, 47, 1–8. [Google Scholar] [CrossRef]
- Torres-Ronda, L.; Beanland, E.; Whitehead, S.; Sweeting, A.; Clubb, J. Tracking Systems in Team Sports: A Narrative Review of Applications of the Data and Sport Specific Analysis. Sports Med. Open 2022, 8, 15. [Google Scholar] [CrossRef]
- Calleja-González, J.; Mallo, J.; Cos, F.; Sampaio, J.; Jones, M.T.; Marqués-Jiménez, D.; Mielgo-Ayuso, J.; Freitas, T.T.; Alcaraz, P.E.; Vilamitjana, J.; et al. A commentary of factors related to player availability and its influence on performance in elite team sports. Front. Sports Act. Living 2023, 4, 1077934. [Google Scholar] [CrossRef]
- Schelling, X.; Robertson, S. A development framework for decision support system in high performance sport. Int. J. Comput. Sci. Sport 2020, 19, 1. [Google Scholar] [CrossRef]
- Torres-Ronda, L.; Clubb, J.; Beanland, E. Tracking Systems in Team Sports: Back to Basics. Sport Perform. Sci. Rep. 2022, 159, 1. [Google Scholar]
- Tuttle, M.C.; Power, C.J.; Dalbo, V.J.; Scanlan, A.T. Intensity Zones and Intensity Thresholds Used to Quantify External Load in Competitive Basketball: A Systematic Review. Sports Med. 2024, 54, 2571–2596. [Google Scholar] [CrossRef]
- MacInnis, M.J.; Gibala, M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Soto, F.J.; Rico-González, M.; Vieira, L.H.P.; Clemente, F.M.; Nobari, H.; Pino-Ortega, J. A systematic review about stablished methods and thresholds to determine velocity and accelerations in soccer. Int. J. Sports Sci. Coach. 2022, 18, 1768–1781. [Google Scholar] [CrossRef]
- Ibáñez, S.J.; Gómez-Carmona, C.D.; Mancha-Triguero, D. Individualization of Intensity Thresholds on External Workload Demands in Women’s Basketball by K-Means Clustering: Differences Based on the Competitive Level. Sensors 2022, 22, 324. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, S.J.; Gómez-Carmona, C.D.; López-Sierra, P.; Feu, S. Intensity Thresholds for External Workload Demands in Basketball: Is Individualization Based on Playing Positions Necessary? Sensors 2024, 24, 1146. [Google Scholar] [CrossRef] [PubMed]
- West, S.W.; Clubb, J.; Torres-Ronda, L.; Howells, D.; Leng, E.; Vescovi, J.D.; Carmody, S.; Posthumus, M.; Dalen-Lorentsen, T.; Windt, J. More than a Metric: How Training Load is Used in Elite Sport for Athlete Management. Int. J. Sports Med. 2021, 42, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Sosa, C.; Lorenzo, A.; Trapero, J.; Ribas, C.; Alonso, E.; Jimenez, S.L. Specific Absolute Velocity Thresholds during Male Basketball Games Using Local Positional System; Differences between Age Categories. Appl. Sci. (Switz.) 2021, 11, 4390. [Google Scholar] [CrossRef]
- Alonso Pérez-Chao, E.; Gómez, M.Á.; Lisboa, P.; Trapero, J.; Jiménez, S.L.; Lorenzo, A. Fluctuations in External Peak Demands Across Quarters During Basketball Games. Front. Physiol. 2022, 13, 868009. [Google Scholar] [CrossRef]
- Alonso Pérez-Chao, E.; Lorenzo, A.; Scanlan, A.; Lisboa, P.; Sosa, C.; Gómez, M.Á. Higher Playing Times Accumulated Across Entire Games and Prior to Intense Passages Reduce the Peak Demands Reached by Elite, Junior, Male Basketball Players. Am. J. Men’s Health 2021, 15, 15579883211054353. [Google Scholar] [CrossRef]
- Sosa-Marin, C.; Alonso-Pérez-Chao, E.; Trapero, J.; Ribas, C.; Leicht, A.S.; Lorenzo, A.; Jiménez, S.L. External Physical Demands during Official Under-18 Basketball Games: Consideration of Overtime Periods. J. Hum. Kinet. 2024, 94, 181–190. Available online: https://jhk.termedia.pl/External-Physical-Demands-during-Official-Under-18-Basketball-Games-Consideration,185682,0,2.html (accessed on 4 January 2025). [CrossRef]
- Castillo, D.; Raya-González, J.; Clemente, F.M.; Conte, D.; Rodríguez-Fernández, A. The effects of defensive style and final game outcome on the external training load of professional basketball players. Biol. Sport 2021, 38, 483–490. [Google Scholar] [CrossRef]
- Vázquez-Guerrero, J.; Ayala, F.; Garcia, F.; Sampaio, J. The Most Demanding Scenarios of Play in Basketball Competition From Elite Under-18 Teams. Front. Psychol. 2020, 11, 552. [Google Scholar] [CrossRef]
- Vázquez-Guerrero, J.; Fernández-Valdés, B.; Gonçalves, B.; Sampaio, J.E. Changes in Locomotor Ratio During Basketball Game Quarters From Elite Under-18 Teams. Front. Psychol. 2019, 10, 2163. [Google Scholar] [CrossRef]
- Vázquez-Guerrero, J.; Fernández-Valdés, B.; Jones, B.; Moras, G.; Reche, X.; Sampaio, J. Changes in physical demands between game quarters of U18 elite official basketball games. PLoS ONE 2019, 14, e0221818. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Guerrero, J.; Jones, B.; Fernández-Valdés, B.; Moras, G.; Reche, X.; Sampaio, J. Physical demands of elite basketball during an official U18 international tournament. J. Sports Sci. 2019, 37, 2530–2537. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Guerrero, J.; Reche, X.; Cos, F.; Casamichana, D.; Sampaio, J. Changes in External Load When Modifying Rules of 5-on-5 Scrimmage Situations in Elite Basketball. J. Strength Cond. Res. 2020, 34, 3217–3224. [Google Scholar] [CrossRef]
- Castillo, D.; Raya-González, J.; Scanlan, A.T.; Sánchez-Díaz, S.; Lozano, D.; Yanci, J. The influence of physical fitness attributes on external demands during simulated basketball matches in youth players according to age category. Physiol. Behav. 2021, 233, 113354. [Google Scholar] [CrossRef]
- Portes, R.; Jiménez, S.L.; Navarro, R.M.; Scanlan, A.T.; Gómez, M.Á. Comparing the external loads encountered during competition between elite, junior male and female basketball players. Int. J. Environ. Res. Public Health 2020, 17, 1456. [Google Scholar] [CrossRef]
- Clemente, F.M.; Ramirez-Campillo, R.; Beato, M.; Moran, J.; Kawczynki, A.; Makar, P.; Sarmento, H.; Afonso, J. Arbitrary vs individualized running speed thresholds in team sport: A scoping review with evidence gap map. Biol. Sport 2023, 3, 919–943. [Google Scholar] [CrossRef]
- Reina, M.; García-rubio, J.; Ibáñez, S.J. Activity demands and speed profile of young female basketball players using ultra-wide band technology. Int. J. Environ. Res. Public Health 2020, 17, 1477. [Google Scholar] [CrossRef]
- Ibáñez, S.J.; López-Sierra, P.; Lorenzo, A.; Feu, S. Kinematic and Neuromuscular Ranges of External Loading in Professional Basketball Players during Competition. Appl. Sci. 2023, 13, 11936. [Google Scholar] [CrossRef]
- Scanlan, A.T.; Fox, J.L.; Milanović, Z.; Stojanović, E.; Stanton, R.; Dalbo, V.J. Individualized and Fixed Thresholds to Demarcate PlayerLoad Intensity Zones Produce Different Outcomes. J. Strength Cond. Res. 2021, 35, 2046–2052. [Google Scholar] [CrossRef] [PubMed]
- Pleša, J.; Ujaković, F.; Ribič, A.; Bishop, C.; Šarabon, N.; Kozinc, Ž. Effectiveness of an Individualized Training Based on Dynamic Strength Index on Sprinting, Jumping and Change of Direction Performance in Basketball Players: A Randomized Controlled Trial. J. Sports Sci. Med. 2024, 23, 504–514. [Google Scholar] [CrossRef]
- Rojas-Valverde, D.; Gómez-Carmona, C.; Rico-González, M.; Pino-Ortega, J. A Proposal of Speed Zone Classification in Basketball: A New-Criteria Based on Maximum Registered Values. MHSalud: Rev. Cienc. Mov. Hum. Salud 2022, 19, 1–15. [Google Scholar] [CrossRef]
- García, F.; Schelling, X.; Castellano, J.; Martín-García, A.; Pla, F.; Vázquez-Guerrero, J. Comparison of the most demanding scenarios during different in-season training sessions and official matches in professional basketball players. Biol. Sport 2022, 39, 237–244. [Google Scholar] [CrossRef]
- Pion, J.; Segers, V.; Stautemas, J.; Boone, J.; Lenoir, M.; Bourgois, J.G. Position-specific performance profiles, using predictive classification models in senior basketball. Int. J. Sports Sci. Coach. 2018, 13, 1072–1080. [Google Scholar] [CrossRef]
- Bianchi, F.; Facchinetti, T.; Zuccolotto, P. Role revolution: Towards a new meaning of positions in basketball. Electron. J. Appl. Stat. Anal. 2017, 10, 712–734. Available online: https://api.semanticscholar.org/CorpusID:67005984 (accessed on 4 January 2025).
- Ato, M.; López, J.J.; Benavente, A. Un sistema de clasificación de los diseños de investigación en psicología. An. Psicol. 2013, 29, 1038–1059. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Swann, C.; Moran, A.; Piggott, D. Defining elite athletes: Issues in the study of expert performance in sport psychology. Psychol. Sport Exerc. 2015, 16, 3–14. [Google Scholar] [CrossRef]
- Hellmann, F.; Verdi, M.; Schlemper Junior, B.R.; Caponi, S. 50th Anniversary of the Declaration of Helsinki: The Double Standard Was Introduced. Arch. Med. Res. 2014, 45, 600–601. [Google Scholar] [CrossRef]
- Casamichana, D.; Morencos, E.; Romero-Moraleda, B.; Gabbett, T.J. The Use of Generic and Individual Speed Thresholds for Assessing the Competitive Demands of Field Hockey. J. Sports Sci. Med. 2018, 17, 366–371. [Google Scholar]
- Gabbett, T.J. The use of relative speed zones increases the high-speed running performed in team sport match-play. J. Strength Cond. Res. 2015, 29, 3353–3359. [Google Scholar] [CrossRef]
- Svilar, L.; Castellano, J.; Jukic, I.; Casamichana, D. Positional differences in elite basketball: Selecting appropriate training-load measures. Int. J. Sports Physiol. Perform. 2018, 13, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Puente, C.; Abián-Vicén, J.; Areces, F.; López, R.; Del Coso, J. Physical and Physiological Demands of Experienced Male Basketball Players during a Competitive Game. J. Strength Cond. Res. 2017, 31, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Hodder, R.W.; Ball, K.A.; Serpiello, F.R. Criterion validity of catapult clearsky t6 local positioning system for measuring inter-unit distance. Sensors 2020, 20, 3693. [Google Scholar] [CrossRef]
- Hoppe, M.W.; Baumgart, C.; Polglaze, T.; Freiwald, J. Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports. PLoS ONE 2018, 13, e0192708. [Google Scholar] [CrossRef]
- Luteberget, L.S.; Spencer, M.; Gilgien, M. Validity of the Catapult ClearSky T6 local positioning system for team sports specific drills, in indoor conditions. Front. Physiol. 2018, 9, 115. [Google Scholar] [CrossRef]
- Serpiello, F.R.; Hopkins, W.G.; Barnes, S.; Tavrou, J.; Duthie, G.M.; Aughey, R.J.; Ball, K. Validity of an ultra-wideband local positioning system to measure locomotion in indoor sports. J. Sports Sci. 2017, 36, 1727–1733. [Google Scholar] [CrossRef] [PubMed]
- Luteberget, L.S.; Holme, B.R.; Spencer, M. Reliability of wearable inertial measurement units to measure physical activity in team handball. Int. J. Sports Physiol. Perform. 2017, 13, 467–473. [Google Scholar] [CrossRef]
- Johnston, R.J.; Watsford, M.L.; Kelly, S.J.; Pine, M.J.; Spurrs, R.W. Validity and interunit reliability of 10 Hz and 15 Hz GPS units for assessing athlete movement demands. J. Strength Cond. Res. 2014, 28, 1649–1655. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988; p. 567. [Google Scholar]
- García, F.; Castellano, J.; Reche, X.; Vázquez-Guerrero, J. Average Game Physical Demands and the Most Demanding Scenarios of Basketball Competition in Various Age Groups. J. Hum. Kinet. 2021, 79, 165–174. [Google Scholar] [CrossRef]
- Clemente, F.M. Small-Sided and Conditioned Games in Basketball Training. Strength Cond. J. 2016, 38, 49–58. [Google Scholar] [CrossRef]
- Conte, D.; Favero, T.G.; Lupo, C.; Francioni, F.M.; Capranica, L.; Tessitore, A. Time-motion analysis of Italian elite women’s basketball games: Individual and team analyses. J. Strength Cond. Res. 2015, 29, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Svilar, L.; Castellano, J.; Jukic, I.; Bok, D. Short-term tapering prior to the match: External and internal load quantification in top-level basketball. Arch. Med. Deporte 2019, 36, 288–295. [Google Scholar]
- Salazar, H.; Alonso Pérez-Chao, E.; Svilar, L.; Castellano, J. Analysing short-term training load distribution in elite European basketball: An exploration under six head coaches. Int. J. Perform. Anal. Sport 2024, 25, 35–46. [Google Scholar] [CrossRef]
- Malone, S.; Roe, M.; Doran, D.A.; Gabbett, T.J.; Collins, K. High chronic training loads and exposure to bouts of maximal velocity running reduce injury risk in elite Gaelic football. J. Sci. Sport Med. 2017, 20, 250–254. [Google Scholar] [CrossRef]
- Chamari, K.; Manzi, V.; Ottavio, S.D.; Impellizzeri, F.M.; Chaouachi, A.; Castagna, C. Profile of Weekly Training Load in Elite Male Professional Basketball Players. J. Strength Cond. Res. 2010, 24, 1399–1406. [Google Scholar] [CrossRef]
- Gronwald, T.; Törpel, A.; Herold, F.; Budde, H. Perspective of Dose and Response for Individualized Physical Exercise and Training Prescription. J. Funct. Morphol. Kinesiol. 2020, 5, 48. [Google Scholar] [CrossRef]
- Stratton, G.; Oliver, J.L. The impact of growth and maturation on physical performance. In Strength and Conditioning for Young Athletes, 2nd ed.; Routledge: London, UK, 2019; pp. 3–18. [Google Scholar]
- Sosa Marín, C.; Alonso-Pérez-Chao, E.; Schelling, X.; Lorenzo, A. How to Optimize Training Design? A Narrative Review of Load Modulators in Basketball Drills. Appl. Sci. 2025, 15, 3816. [Google Scholar] [CrossRef]
- Sosa, C.; Alonso-Pérez-Chao, E.; Ribas, C.; Schelling, X.; Lorenzo, A. Description and Classification of Training Drills, Based on Biomechanical and Physiological Load, in Elite Basketball. Sensors 2025, 25, 262. [Google Scholar] [CrossRef]
1st Stage (n = 17) | 2nd Stage (n = 17) | 3rd Stage (n = 15) | Player Average | |
---|---|---|---|---|
Player 1 | 28.85 ± 2.09 | 29.39 ± 3.31 | 27.46 ± 4.25 | 28.57 ± 0.81 |
Player 2 | 28.94 ± 2.42 | 28.39 ± 4.27 | 28.89 ± 4.4 | 28.76 ± 0.25 |
Player 3 | 25.96 ± 1.28 | 28.62 ± 5.57 | 24.47 ± 4.41 | 26.5 ± 1.72 |
Player 4 | 28.06 ± 1.92 | 26.89 ± 3.51 | 28.23 ± 5.15 | 27.65 ± 0.6 |
Player 5 | 27.8 ± 1.91 | 27.66 ± 3.95 | 27.35 ± 4.07 | 27.6 ± 0.19 |
Player 6 | 26.33 ± 2.29 | 24.39 ± 4.05 | 25.26 ± 4.52 | 25.31 ± 0.79 |
Player 7 | 25.99 ± 1.23 | 25.44 ± 4.26 | 24.71 ± 4.52 | 25.29 ± 0.52 |
Player 8 | 27.99 ± 2.13 | 28.22 ± 3.91 | 27.5 ± 3.2 | 27.96 ± 0.3 |
Player 9 | 27.39 ± 0.9 | 26.65 ± 3.37 | 30.17 ± 7.82 | 27.96 ± 1.52 |
Player 10 | 26.93 ± 2.05 | 26.03 ± 3.89 | 25.19 ± 3.16 | 26.01 ± 0.71 |
Player 11 | 26.78 ± 1.83 | 29.25 ± 2.83 | 26.95 ± 4 | 27.72 ± 1.13 |
Player 12 | 28.17 ± 2.34 | 29.65 ± 4.49 | 25.9 ± 5.43 | 28.25 ± 1.54 |
Speed Zones | Arbitrary Speed Thresholds (km·h−1) | Relative Speed Thresholds (% Player Peak Velocity) |
---|---|---|
Zone 1 (Standing–Walking) | (<7.0) | <29.0% |
Zone 2 (Jogging) | (7.0–14.0) | 29.1–58.0% |
Zone 3 (Running) | (14.1–18.0) | 58.1–75.0% |
Zone 4 (High Speed) | (>18.0) | >75.0% |
Clusters | Event | Speed Zones (m) | Arbitrary (m) | Arbitrary CV (%) | Relative (m) | Relative CV (%) | Mean Difference (m) | 95% CI of Mean Difference | ICC | F | p | d |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Slow | Match | Z1 | 1361.4 ± 895.6 | 65.8 | 1468.5 ± 928.4 | 63.2 | 107.1 | 956–1764 | 0.153 | 0.33 | 0.566 | 0.12 |
Z2 | 868.7 ± 452.2 | 52.1 | 835.1 ± 420.3 | 50.3 | 33.6 | 639–1015 | 0.143 | 0.14 | 0.707 | 0.08 | ||
Z3 | 274.9 ± 147.5 | 53.7 | 243.6 ± 136.8 | 56.2 | 31.3 | 203.3–305.4 | 0.086 | 1.11 | 0.296 | 0.22 | ||
Z4 * | 86.9 ± 51.4 | 59.1 | 45.1 ± 37.8 | 83.8 | 41.8 | 55.1–76.5 | 0.012 | 18.6 | <0.001 | 0.93 | ||
Training | Z1 | 2334 ± 875 | 37.5 | 2458 ± 849.5 | 34.6 | 123.5 | 2236–2550 | 0.021 | 1.56 | 0.212 | 0.14 | |
Z2 | 827 ± 498 | 60.2 | 764.5 ± 471.1 | 61.6 | 62.9 | 751–864.4 | 0.013 | 1.37 | 0.243 | 0.13 | ||
Z3 | 207 ± 161 | 77.8 | 195.4 ± 157.2 | 80.5 | 11.5 | 179.6–222.1 | 0.005 | 0.39 | 0.531 | 0.07 | ||
Z4 * | 118 ± 114 | 96.6 | 69 ± 77.6 | 112.5 | 49 | 69.9–115.2 | 0.043 | 19.6 | <0.001 | 0.5 | ||
Fast | Match | Z1 * | 1336 ± 605 | 45.3 | 1599.2 ± 670.3 | 41.9 | 262.67 | 1335.3–1602 | 0.042 | 7.3 | 0.008 | 0.41 |
Z2 | 1213 ± 529.7 | 43.7 | 1205.2 ± 528.2 | 43.8 | 7.65 | 1057–1327 | 0.086 | 0.01 | 0.923 | 0.01 | ||
Z3 * | 400 ± 187.6 | 46.9 | 259.5 ± 138.8 | 53.5 | 140.87 | 290–366.2 | 0.063 | 31.8 | <0.001 | 0.85 | ||
Z4 * | 161 ± 84.1 | 52.2 | 47.4 ± 36.8 | 77.6 | 113.63 | 83.7–123.7 | 0.147 | 145 | <0.001 | 1.75 | ||
Training | Z1 * | 2136 ± 779 | 36.5 | 2384.4 ± 749.6 | 31.4 | 248.5 | 2119–2393 | 0.053 | 16 | <0.001 | 0.33 | |
Z2 | 1026 ± 502 | 48.9 | 959 ± 502.9 | 52.4 | 66.6 | 978–1098.2 | 0.006 | 2.03 | 0.155 | 0.13 | ||
Z3 * | 289 ± 181 | 62.6 | 209.4 ± 150.5 | 71.9 | 79.9 | 246–288.9 | 0.018 | 57.6 | <0.001 | 0.48 | ||
Z4 * | 162 ± 137 | 84.6 | 60 ± 65.4 | 109 | 101.8 | 94.5–125.7 | 0.033 | 213 | <0.001 | 0.95 |
Clusters | Season Stages | Speed Zones (m) | Arbitrary (m) | Arbitrary CV (%) | Relative (m) | Relative CV (%) | Mean Difference (m) | 95% CI of Mean Difference | ICC | F | p | d |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Slow | Entire season | Z1 | 2118 ± 967 | 45.7 | 2237.6 ± 958.6 | 42.8 | 119.9 | 2025.4–2321 | 0.014 | 1.51 | 0.22 | 0.12 |
Z2 | 837 ± 487 | 58.2 | 780.3 ± 460.1 | 59 | 56.3 | 751–864.4 | 0.004 | 1.37 | 0.243 | 0.12 | ||
Z3 | 222 ± 160 | 72.1 | 206.1 ± 153.8 | 74.6 | 15.9 | 197.5–230.6 | 0.001 | 0.99 | 0.32 | 0.1 | ||
Z4 * | 111 ± 104 | 93.7 | 63.7 ± 71.3 | 111.9 | 47.4 | 68.2–106.2 | 0.037 | 28 | <0.001 | 0.53 | ||
Stage 1 | Z1 | 1945 ± 533.4 | 27.4 | 2126.6 ± 577.5 | 27.2 | 181.9 | 1853.67–2221 | 0.081 | 3.51 | 0.063 | 0.33 | |
Z2 | 1097 ± 319.5 | 29.1 | 1018.1 ± 303.0 | 29.8 | 78.6 | 1002–1112.7 | 0 | 1.94 | 0.166 | 0.25 | ||
Z3 | 297 ± 127.0 | 42.8 | 265.1 ± 120.8 | 45.6 | 32.2 | 259.2–303.2 | 0 | 2.06 | 0.154 | 0.26 | ||
Z4 * | 139 ± 89.1 | 64.1 | 67.2 ± 60.2 | 89.6 | 71.3 | 70.9–130.2 | 0.124 | 29.9 | <0.001 | 0.94 | ||
Stage 2 | Z1 | 1881 ± 698 | 37.1 | 2011.4 ± 706.3 | 35.1 | 130.1 | 1816–2077 | 0.008 | 1.21 | 0.273 | 0.19 | |
Z2 | 825 ± 522 | 63.3 | 756.3 ± 489.7 | 64.7 | 68.4 | 707–874.3 | 0 | 0.64 | 0.425 | 0.14 | ||
Z3 | 201 ± 157 | 78.1 | 189.0 ± 155.8 | 82.4 | 11.6 | 164.4–225.6 | 0.012 | 0.2 | 0.66 | 0.07 | ||
Z4 * | 106 ± 107 | 100.9 | 56.4 ± 64.1 | 113.7 | 50 | 61.8–101.2 | 0.024 | 11.5 | <0.001 | 0.57 | ||
Stage 3 | Z1 | 2554.9 ± 1350 | 52.8 | 2602.0 ± 1339.5 | 51.5 | 47.15 | 2316–2837 | 0.007 | 0.04 | 0.845 | 0.04 | |
Z2 | 594.2 ± 459 | 77.2 | 573.3 ± 451.7 | 78.8 | 20.83 | 469–692 | 0.03 | 0.07 | 0.797 | 0.05 | ||
Z3 | 172.3 ± 168 | 97.5 | 167.5 ± 165.3 | 98.7 | 4.78 | 140.5–199.2 | 0 | 0.03 | 0.874 | 0.03 | ||
Z4 | 89.2 ± 110 | 123.3 | 68.3 ± 87.8 | 128.6 | 20.86 | 61.3–96.2 | 0 | 1.37 | 0.244 | 0.21 | ||
Fast | Entire season | Z1 * | 1957 ± 814 | 41.6 | 2209.2 ± 801.7 | 36.3 | 252 | 2021–2202 | 0.031 | 16.5 | <0.001 | 0.31 |
Z2 | 1067 ± 513 | 48.1 | 1013.9 ± 518.2 | 51.1 | 53.4 | 882–1037 | 0.018 | 3.36 | 0.067 | 0.1 | ||
Z3 * | 314 ± 188 | 59.9 | 220.6 ± 149.3 | 67.7 | 93.5 | 228.5–270.6 | 0.022 | 46.4 | <0.001 | 0.55 | ||
Z4 * | 162 ± 127 | 78.4 | 57.2 ± 60.4 | 105.6 | 104 | 94.5–125.7 | 0.041 | 213 | <0.001 | 1.05 | ||
Stage 1 | Z1 * | 1802 ± 461 | 25.6 | 2099.6 ± 532.7 | 25.4 | 297.9 | 1837–2063 | 0.078 | 25.4 | <0.001 | 0.6 | |
Z2 | 1306 ± 365 | 27.9 | 1244.7 ± 361 | 29 | 53.4 | 978–1098.2 | 0.069 | 2.03 | 0.155 | 0.17 | ||
Z3 * | 378 ± 144 | 38.1 | 260.8 ± 125.1 | 48 | 116.8 | 246 - 288.9 | 0.101 | 57.6 | <0.001 | 0.87 | ||
Z4 * | 188 ± 108 | 57.4 | 68.2 ± 54.8 | 80.4 | 120 | 107–149 | 0.1 | 143 | <0.001 | 1.4 | ||
Stage 2 | Z1 * | 1759 ± 656 | 37.3 | 2010.1 ± 666.2 | 33.1 | 251.5 | 1797.5–1969 | 0.004 | 9.51 | 0.002 | 0.38 | |
Z2 | 993 ± 495 | 49.8 | 935.9 ± 496.7 | 53.1 | 57 | 978–1098.2 | 0 | 2.03 | 0.155 | 0.12 | ||
Z3 * | 292 ± 181 | 62 | 200.8 ± 145.1 | 72.3 | 91.6 | 246–288.9 | 0 | 57.6 | <0.001 | 0.56 | ||
Z4 * | 150 ± 135 | 90 | 47.1 ± 57.9 | 122.9 | 102.7 | 80.9–118.7 | 0.039 | 66.5 | <0.001 | 0.99 | ||
Stage 3 | Z1 | 2385 ± 1113 | 46.7 | 2581.1 ± 1061.5 | 41.1 | 195.9 | 2243–2685 | 0.05 | 1.85 | 0.175 | 0.18 | |
Z2 | 868 ± 577 | 66.5 | 828.2 ± 600.1 | 72.5 | 39.9 | 768–928 | 0.002 | 0.25 | 0.617 | 0.07 | ||
Z3 * | 263 ± 220 | 83.7 | 195.7 ± 170.7 | 87.2 | 67.6 | 203–255.6 | 0 | 6.42 | 0.012 | 0.34 | ||
Z4 * | 144 ± 135 | 93.8 | 56.0 ± 67.5 | 120.5 | 87.8 | 83.4–117.4 | 0.016 | 37.4 | <0.001 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Álvarez, A.; Leicht, A.S.; Vaquera, A.; Gómez-Ruano, M.-Á. Effect of Speed Threshold Approaches for Evaluation of External Load in Male Basketball Players. Sensors 2025, 25, 6085. https://doi.org/10.3390/s25196085
Ruiz-Álvarez A, Leicht AS, Vaquera A, Gómez-Ruano M-Á. Effect of Speed Threshold Approaches for Evaluation of External Load in Male Basketball Players. Sensors. 2025; 25(19):6085. https://doi.org/10.3390/s25196085
Chicago/Turabian StyleRuiz-Álvarez, Abel, Anthony S. Leicht, Alejandro Vaquera, and Miguel-Ángel Gómez-Ruano. 2025. "Effect of Speed Threshold Approaches for Evaluation of External Load in Male Basketball Players" Sensors 25, no. 19: 6085. https://doi.org/10.3390/s25196085
APA StyleRuiz-Álvarez, A., Leicht, A. S., Vaquera, A., & Gómez-Ruano, M.-Á. (2025). Effect of Speed Threshold Approaches for Evaluation of External Load in Male Basketball Players. Sensors, 25(19), 6085. https://doi.org/10.3390/s25196085