The Utility of Angular Velocity During Back Squat to Predict 1RM and Load–Velocity Profiling
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Body Composition
2.4. Warm-Up
2.5. 1-Repetition Maximum Testing
2.6. Submaximal Testing
2.7. Linear and Angular Velocity Measurements
2.8. 1-Repetition Maximum Estimation
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VBT | Velocity-based Training |
1RM | 1-Repetition Maximum |
CSCS | Certified Strength and Conditioning Specialist |
References
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-Based Training: From Theory to Application. Strength Cond. J. 2021, 43, 31–49. [Google Scholar] [CrossRef]
- Banyard, H.G.; Nosaka, K.; Haff, G.G. Reliability and Validity of the Load–Velocity Relationship to Predict the 1RM Back Squat. J. Strength Cond. Res. 2017, 31, 1897–1904. [Google Scholar] [CrossRef] [PubMed]
- Banyard, H.G.; Nosaka, K.; Vernon, A.D.; Haff, G.G. The Reliability of Individualized Load–Velocity Profiles. Int. J. Sports Physiol. Perform. 2018, 13, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Çetin, O.; Akyildiz, Z.; Demirtaş, B.; Sungur, Y.; Clemente, F.M.; Cazan, F.; Ardigò, L.P. Reliability and Validity of the Multi-Point Method and the 2-Point Method’s Variations of Estimating the One-Repetition Maximum for Deadlift and Back Squat Exercises. PeerJ 2022, 10, e13013. [Google Scholar] [CrossRef] [PubMed]
- García-Ramos, A. Resistance Training Intensity Prescription Methods Based on Lifting Velocity Monitoring. Int. J. Sports Med. 2024, 45, 257–266. [Google Scholar] [CrossRef]
- García-Ramos, A.; Barboza-González, P.; Ulloa-Díaz, D.; Rodriguez-Perea, A.; Martinez-Garcia, D.; Guede-Rojas, F.; Hinojosa-Riveros, H.; Chirosa-Ríos, L.J.; Cuevas-Aburto, J.; Janicijevic, D.; et al. Reliability and Validity of Different Methods of Estimating the One-Repetition Maximum during the Free-Weight Prone Bench Pull Exercise. J. Sports Sci. 2019, 37, 2205–2212. [Google Scholar] [CrossRef]
- Hughes, L.J.; Banyard, H.G.; Dempsey, A.R.; Scott, B.R. Using a Load-Velocity Relationship to Predict One Repetition Maximum in Free-Weight Exercise: A Comparison of the Different Methods. J. Strength Cond. Res. 2019, 33, 2409–2419. [Google Scholar] [CrossRef]
- Jidovtseff, B.; Harris, N.K.; Crielaard, J.-M.; Cronin, J.B. Using the Load-Velocity Relationship for 1RM Prediction. J. Strength Cond. Res. 2011, 25, 267–270. [Google Scholar] [CrossRef]
- Kilgallon, J.; Cushion, E.; Joffe, S.; Tallent, J. Reliability and Validity of Velocity Measures and Regression Methods to Predict Maximal Strength Ability in the Back-Squat Using a Novel Linear Position Transducer. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2022, 239, 175433712210931. [Google Scholar] [CrossRef]
- Mann, B. Developing Explosive Athletes: Use of Velocity Based Training in Athletes; Ultimate Athlete Concepts. 2016. Available online: https://www.amazon.sg/Developing-Explosive-Athletes-Velocity-Training/dp/B095GLNSVQ (accessed on 5 April 2025).
- McBurnie, A.J.; Allen, K.P.; Garry, M.; Martin, M.; Jones, P.A.; Comfort, P.; McMahon, J.J. The Benefits and Limitations of Predicting One Repetition Maximum Using the Load-Velocity Relationship. Strength Cond. J. 2019, 41, 28–40. [Google Scholar] [CrossRef]
- Thompson, S.W.; Rogerson, D.; Ruddock, A.; Greig, L.; Dorrell, H.F.; Barnes, A. A Novel Approach to 1RM Prediction Using the Load-Velocity Profile: A Comparison of Models. Sports 2021, 9, 88. [Google Scholar] [CrossRef]
- Liao, K.-F.; Wang, X.-X.; Han, M.-Y.; Li, L.-L.; Nassis, G.P.; Li, Y.-M. Effects of Velocity Based Training vs. Traditional 1RM Percentage-Based Training on Improving Strength, Jump, Linear Sprint and Change of Direction Speed Performance: A Systematic Review with Meta-Analysis. PLoS ONE 2021, 16, e0259790. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, Q.; Sun, J.; Ding, S.; Yang, Q.; Zhang, Z.; Lu, J.; Liang, X.; Li, D. Comparison of Velocity and Percentage-Based Training on Maximal Strength: Meta-Analysis. Int. J. Sports Med. 2022, 43, 981–995. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, S.; Peng, R.; Li, H. The Role of Velocity-Based Training (VBT) in Enhancing Athletic Performance in Trained Individuals: A Meta-Analysis of Controlled Trials. Int. J. Environ. Res. Public Health 2022, 19, 9252. [Google Scholar] [CrossRef] [PubMed]
- García-Ramos, A.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Gregory Haff, G. Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability? J. Strength Cond. Res. 2018, 32, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.F.T.; Lamb, K.L.; Clark, C.C.T.; Moran, J.; Drury, B.; Garcia-Ramos, A.; Twist, C. Comparison of the FitroDyne and GymAware Rotary Encoders for Quantifying Peak and Mean Velocity During Traditional Multijointed Exercises. J. Strength Cond. Res. 2021, 35, 1760–1765. [Google Scholar] [CrossRef] [PubMed]
- Weakley, J.; Morrison, M.; García-Ramos, A.; Johnston, R.; James, L.; Cole, M.H. The Validity and Reliability of Commercially Available Resistance Training Monitoring Devices: A Systematic Review. Sports Med. 2021, 51, 443–502. [Google Scholar] [CrossRef]
- García-Ramos, A. The 2-Point Method: Theoretical Basis, Methodological Considerations, Experimental Support, and Its Application Under Field Conditions. Int. J. Sports Physiol. Perform. 2023, 18, 1092–1100. [Google Scholar] [CrossRef]
- Lake, J.; Naworynsky, D.; Duncan, F.; Jackson, M. Comparison of Different Minimal Velocity Thresholds to Establish Deadlift One Repetition Maximum. Sports 2017, 5, 70. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Piepoli, A.; Garrido-Blanca, G.; Delgado-García, G.; Balsalobre-Fernández, C.; García-Ramos, A. Precision of 7 Commercially Available Devices for Predicting Bench-Press 1-Repetition Maximum from the Individual Load–Velocity Relationship. Int. J. Sports Physiol. Perform. 2019, 14, 1442–1446. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Marchante, D.; Muñoz-López, M.; Jiménez, S.L. Validity and Reliability of a Novel iPhone App for the Measurement of Barbell Velocity and 1RM on the Bench-Press Exercise. J. Sports Sci. 2017, 36, 64–70. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; García-Ramos, A.; Jiménez-Reyes, P. Load–Velocity Profiling in the Military Press Exercise: Effects of Gender and Training. Int. J. Sports Sci. Coach. 2018, 13, 743–750. [Google Scholar] [CrossRef]
- García-Ramos, A.; Suzovic, D.; Pérez-Castilla, A. The Load-Velocity Profiles of Three Upper-Body Pushing Exercises in Men and Women. Sports Biomech. 2021, 20, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Torrejón, A.; Balsalobre-Fernández, C.; Haff, G.G.; García-Ramos, A. The Load-Velocity Profile Differs More between Men and Women than between Individuals with Different Strength Levels. Sports Biomech. 2019, 18, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Acevedo, R.; Romero-Moraleda, B.; Díaz-Lara, F.J.; de la Rubia, A.; González-García, J.; Mon-Lopez, D. A Systematic Review and Meta-Analysis of the Differences in Mean Propulsive Velocity between Men and Women in Different Exercises. Sports 2023, 11, 118. [Google Scholar] [CrossRef]
- Mendonca, G.V.; Fitas, A.; Santos, P.; Gomes, M.; Pezarat-Correia, P. Predictive Equations to Estimate Relative Load Based on Movement Velocity in Males and Females: Accuracy of Estimation for the Smith Machine Concentric Back Squat. J. Strength Cond. Res. 2023, 37, 1559–1565. [Google Scholar] [CrossRef]
- Stock, M.S.; Beck, T.W.; DeFreitas, J.M.; Dillon, M.A. Test–Retest Reliability of Barbell Velocity during the Free-Weight Bench-Press Exercise. J. Strength Cond. Res. 2011, 25, 171–177. [Google Scholar] [CrossRef]
- Lorenzetti, S.; Lamparter, T.; Lüthy, F. Validity and Reliability of Simple Measurement Device to Assess the Velocity of the Barbell during Squats. BMC Res. Notes 2017, 10, 707. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Martin, J.R. Is the OUTPUT Sports Unit Reliable and Valid When Estimating Back Squat and Bench Press Concentric Velocity? J. Strength Cond. Res. 2022, 36, 2069–2076. [Google Scholar] [CrossRef]
- Hopkins, W.G. New View of Statistics: Effect Magnitudes. Available online: https://www.sportsci.org/resource/stats/effectmag.html (accessed on 14 March 2025).
- Ruf, L.; Chéry, C.; Taylor, K.-L. Validity and Reliability of the Load-Velocity Relationship to Predict the One-Repetition Maximum in Deadlift. J. Strength Cond. Res. 2018, 32, 681–689. [Google Scholar] [CrossRef]
- Fitas, A.; Gomes, M.; Santos, P.; Gonçalves, A.D.; Pezarat-Correia, P.; Mendonca, G.V. Optimal Minimum-Velocity Threshold to Predict One-Repetition Maximum for the Back Squat. Int. J. Sports Med. 2024, 45, 923–929. [Google Scholar] [CrossRef]
- Janicijevic, D.; Jukic, I.; Weakley, J.; García-Ramos, A. Bench Press 1-Repetition Maximum Estimation Through the Individualized Load-Velocity Relationship: Comparison of Different Regression Models and Minimal Velocity Thresholds. Int. J. Sports Physiol. Perform. 2021, 16, 1074–1081. [Google Scholar] [CrossRef]
- Mann, B. The Velocity Zones Explained. GymAware. 2020. Available online: https://gymaware.com/velocity_zones/ (accessed on 27 February 2025).
Predicted 1RM | Mean ± SD (kg) | p Value | Cohen’s d (95% CI) | r (95% CI) | SEE (95% CI) |
---|---|---|---|---|---|
1RMlinear | 149.79 ± 53.75 | <0.001 | 1.56 (0.76–2.34) | 0.991 (0.969–0.997) | 16.33 (11.71–26.95) |
1RMangular | 137.07 ± 48.41 | 0.951 | 0.02 (−0.51–0.54) | 0.984 (0.950–0.995) | 9.11 (6.53–15.04) |
Gender | 1RMactual (kg) | 1RMlinear (kg) | Abs. Error 1RMlinear (kg) | 1RMangular (kg) | Abs. Error 1RMangular (kg) |
---|---|---|---|---|---|
Male | 176.91 ± 30.98 | 191.94 ± 35.80 | 15.02 ± 10.97 | 177.54 ± 25.65 | 10.82 ± 4.00 |
Female | 96.93 ± 25.32 | 107.65 ± 28.88 | 10.72 ± 3.94 | 96.59 ± 24.42 | 2.68 ± 2.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beyer, K.S.; Klee, J.P.; Ojert, J.C.; Grenda, M.D.; Odebode, J.O.; Rose, S.A. The Utility of Angular Velocity During Back Squat to Predict 1RM and Load–Velocity Profiling. Sensors 2025, 25, 6047. https://doi.org/10.3390/s25196047
Beyer KS, Klee JP, Ojert JC, Grenda MD, Odebode JO, Rose SA. The Utility of Angular Velocity During Back Squat to Predict 1RM and Load–Velocity Profiling. Sensors. 2025; 25(19):6047. https://doi.org/10.3390/s25196047
Chicago/Turabian StyleBeyer, Kyle S., Jonathan P. Klee, Jake C. Ojert, Marco D. Grenda, Joshua O. Odebode, and Steve A. Rose. 2025. "The Utility of Angular Velocity During Back Squat to Predict 1RM and Load–Velocity Profiling" Sensors 25, no. 19: 6047. https://doi.org/10.3390/s25196047
APA StyleBeyer, K. S., Klee, J. P., Ojert, J. C., Grenda, M. D., Odebode, J. O., & Rose, S. A. (2025). The Utility of Angular Velocity During Back Squat to Predict 1RM and Load–Velocity Profiling. Sensors, 25(19), 6047. https://doi.org/10.3390/s25196047