Advances in Magnetic UAV Sensing: A Comparative Study of the MagNimbus and MagArrow Magnetometers
Abstract
1. Introduction
2. Materials and Methods
2.1. Magnetometers Technical Specifications
2.2. Settings of the Configured Systems
2.3. Magnetic Surveys
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamoudi, M.; Quesnel, Y.; Dyment, J.; Lesur, V. Aeromagnetic and Marine Measurements. In Geomagnetic Observations and Models; Mandea, M., Korte, M., Eds.; IAGA Special Sopron Book Series; Springer: Dordrecht, The Netherlands, 2011; Volume 5. [Google Scholar] [CrossRef]
- Betts, P.G.; Moore, D.; Aitken, A.; Blaikie, T.; Jessell, M.; Ailleres, L.; Armit, R.; McLean, M.; Munukutla, R.; Chukwu, C. Geology from aeromagnetic data. Earth-Sci. Rev. 2024, 258, 104958. [Google Scholar] [CrossRef]
- Barone, A.; Milano, M.; Fedi, M. Inhomogeneous magnetization of Tyrrhenian seamounts revealed from gravity and magnetic correlation analysis. J. Geophys. Res. Solid Earth 2024, 129, e2024JB028977. [Google Scholar] [CrossRef]
- Parshin, A.V.; Morozov, V.A.; Blinov, A.V.; Kosterev, A.N.; Budyak, A.E. Low-altitude geophysical magnetic prospecting based on multirotor UAV as a promising replacement for traditional ground survey. Geo-Spat. Inf. Sci. 2018, 21, 67–74. [Google Scholar] [CrossRef]
- Dadrass Javan, F.; Samadzadegan, F.; Toosi, A.; van der Meijde, M. Unmanned aerial geophysical remote sensing: A systematic review. Remote Sens. 2024, 17, 110. [Google Scholar] [CrossRef]
- Accomando, F.; Florio, G. Applicability of small and low-cost magnetic sensors to geophysical exploration. Sensors 2024, 24, 7047. [Google Scholar] [CrossRef]
- Malehmir, A.; Dynesius, L.; Paulusson, K.; Paulusson, A.; Johansson, H.; Bastani, M.; Wedmark, M.; Marsden, P. The potential of rotary-wing UAV-based magnetic surveys for mineral exploration: A case study from central Sweden. Lead. Edge 2017, 36, 552–557. [Google Scholar] [CrossRef]
- Cunningham, M.; Samson, C.; Wood, A.; Cook, I. Aeromagnetic surveying with a rotary-wing unmanned aircraft system: A case study from a zinc deposit in Nash Creek, New Brunswick, Canada. Pure Appl. Geophys. 2018, 175, 3145–3158. [Google Scholar] [CrossRef]
- Walter, C.; Braun, A.; Fotopoulos, G. High-resolution unmanned aerial vehicle aeromagnetic surveys for mineral exploration targets. Geophys. Prospect. 2020, 68, 334–349. [Google Scholar] [CrossRef]
- Perikleous, D.; Margariti, K.; Velanas, P.; Blazquez, C.S.; Gonzalez-Aguilera, D. Aerial drones for geophysical prospection in mining: A review. Drones 2025, 9, 383. [Google Scholar] [CrossRef]
- Meng, Q.; Ma, G.; Li, L.; Li, J. An optimized detection approach to subsurface coalfield spontaneous combustion areas using airborne magnetic data. Remote Sens. 2025, 17, 1185. [Google Scholar] [CrossRef]
- Parvar, K.; Braun, A.; Layton-Matthews, D.; Burns, M. UAV magnetometry for chromite exploration in the Samail ophiolite sequence, Oman. J. Unmanned Veh. Syst. 2017, 6, 57–69. [Google Scholar] [CrossRef]
- Shahsavani, H.; Smith, R.S. Aeromagnetic gradiometry with UAV: A case study on a small iron ore deposit. Drone Syst. Appl. 2024, 12, 1–9. [Google Scholar] [CrossRef]
- Perikleous, D.; Margariti, K.; Velanas, P.; Blazquez, C.S.; Garcia, P.C.; Gonzalez-Aguilera, D. Application of magnetometer-equipped drone for mineral exploration in mining operations. Drones 2024, 9, 24. [Google Scholar] [CrossRef]
- Dual Mag System. 2021. Available online: http://www.mgt-geo.com/dual%20mag%20system.htm (accessed on 22 July 2021).
- Lee, J.; Lee, H. Modeling residual magnetic anomalies of landmines using UAV-borne vector magnetometer: Flight simulations and experimental validation. Remote Sens. 2024, 16, 2916. [Google Scholar] [CrossRef]
- Mu, Y.; Zhang, X.; Xie, W.; Zheng, Y. Automatic detection of near-surface targets for unmanned aerial vehicle (UAV) magnetic survey. Remote Sens. 2020, 12, 452. [Google Scholar] [CrossRef]
- Accomando, F.; Vitale, A.; Bonfante, A.; Buonanno, M.; Florio, G. Performance of two different flight configurations for drone-borne magnetic data. Sensors 2021, 21, 5736. [Google Scholar] [CrossRef]
- Nikulin, A.; de Smet, T.S. A UAV-based magnetic survey method to detect and identify orphaned oil and gas wells. Lead. Edge 2019, 38, 447–452. [Google Scholar] [CrossRef]
- Mercogliano, F.; Accomando, F.; Vitale, A.; Castaldo, R.; Barone, A.; Tizzani, P. ITINERIS Geophysical Technologies @CNR-IREA: Drone-Based Tests at Altopiano di Verteglia, Avellino (Southern Italy). In Computational Science and Its Applications–ICCSA 2025 Workshops; Gervasi, O., Murgante, B., Garau, C., Karaca, Y., Lago, M.N.F., Scorza, F., Braga, A.C., Eds.; Lecture Notes in Computer Science, 15899; Springer: Cham, Switzerland, 2025. [Google Scholar] [CrossRef]
- de Smet, T.S.; Nikulin, A.; Romanzo, N.; Graber, N.; Dietrich, C.; Puliaiev, A. Successful application of drone-based aeromagnetic surveys to locate legacy oil and gas wells in Cattaraugus County, New York. J. Appl. Geophys. 2021, 186, 104250. [Google Scholar] [CrossRef]
- Gailler, L.; Labazuy, P.; Régis, E.; Bontemps, M.; Souriot, T.; Bacques, G.; Carton, B. Validation of a new UAV magnetic prospecting tool for volcano monitoring and geohazard assessment. Remote Sens. 2021, 13, 894. [Google Scholar] [CrossRef]
- Bruno, P.P.G.; Ferrara, G.; Zambrano, M.; Maraio, S.; Improta, L.; Volatili, T.; Milano, M. Multidisciplinary high-resolution geophysical imaging of Pantano Ripa Rossa segment of the Irpinia Fault (Southern Italy). Sci. Rep. 2024, 14, 26891. [Google Scholar] [CrossRef]
- Accomando, F.; Bonfante, A.; Buonanno, M.; Natale, J.; Vitale, S.; Florio, G. The drone-borne magnetic survey as the optimal strategy for high-resolution investigations in presence of extremely rough terrains: The case study of the Taverna San Felice quarry dike. J. Appl. Geophys. 2023, 217, 105186. [Google Scholar] [CrossRef]
- Schmidt, V.; Becken, M.; Schmalzl, J. A UAV-borne magnetic survey for archaeological prospection of a Celtic burial site. First Break 2020, 38, 61–66. [Google Scholar] [CrossRef]
- Romero-Toribio, M.C.; Martín-Hernández, F.; Ledo, J. High-resolution drone-based aeromagnetic survey at the Tajogaite Volcano (La Palma, Canary Islands): Insights into its early post-eruptive shallow structure. Remote Sens. 2025, 17, 3153. [Google Scholar] [CrossRef]
- Schmidt, V.; Coolen, J.; Fritsch, T.; Klingen, S. Towards drone-based magnetometer measurements for archaeological prospection in challenging terrain. Drone Syst. Appl. 2024, 12, 1–15. [Google Scholar] [CrossRef]
- Piroddi, L.; Abu Zeid, N.; Calcina, S.V.; Capizzi, P.; Capozzoli, L.; Catapano, I.; Tapete, D. Imaging cultural heritage at different scales: Part II, the meso-scale (sites). Remote Sens. 2025, 17, 598. [Google Scholar] [CrossRef]
- Accomando, F.; Florio, G. Drone-borne magnetic gradiometry in archaeological applications. Sensors 2024, 24, 4270. [Google Scholar] [CrossRef] [PubMed]
- Stele, A.; Kaub, L.; Linck, R.; Schikorra, M.; Fassbinder, J.W. Drone-based magnetometer prospection for archaeology. J. Archaeol. Sci. 2023, 158, 105818. [Google Scholar] [CrossRef]
- Gavazzi, B.; Le Maire, P.; Munschy, M.; Dechamp, A. Fluxgate vector magnetometers: A multisensor device for ground, UAV, and airborne magnetic surveys. Lead. Edge 2016, 35, 795–797. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.; Xing, K.; Zhang, X. Unmanned aerial vehicles for magnetic surveys: A review on platform selection and interference suppression. Drones 2021, 5, 93. [Google Scholar] [CrossRef]
- Allocca, V.; De Vita, P.; Manna, F.; Nimmo, J.R. Groundwater recharge assessment at local and episodic scale in a soil mantled perched karst aquifer in southern Italy. J. Hydrol. 2015, 529, 3–16. [Google Scholar] [CrossRef]
- Fiorillo, F.; Pagnozzi, M.; Ventafridda, G. A model to simulate recharge processes of karst massifs. Hydrol. Process. 2015, 29, 2301–2314. [Google Scholar] [CrossRef]
- Walter, C.; Braun, A.; Fotopoulos, G. Characterizing electromagnetic interference signals for unmanned aerial vehicle geophysical surveys. Geophysics 2021, 86, J21–J32. [Google Scholar] [CrossRef]
- Fedi, M.; Cascone, L. Composite continuous wavelet transform of potential fields with different choices of analyzing wavelets. J. Geophys. Res. Solid Earth 2011, 116, B07101. [Google Scholar] [CrossRef]
- Walter, C.; Braun, A.; Fotopoulos, G. Impact of 3-D attitude variations of a UAV magnetometry system on magnetic data quality. Geophys. Prospect. 2019, 67, 465–479. [Google Scholar] [CrossRef]
- Fedi, M.; Cella, F.; Florio, G.; La Manna, M.; Paoletti, V. Geomagnetometry for Archaeology. In Sensing the Past—From Artifact to Historical Site; Masini, N., Soldovieri, F., Eds.; Springer: Cham, Switzerland, 2017; pp. 203–230. [Google Scholar] [CrossRef]
- Paoletti, V.; Fedi, M.; Florio, G.; Rapolla, A. Localized cultural denoising of high-resolution aeromagnetic data. Geophys. Prospect. 2007, 55, 421–432. [Google Scholar] [CrossRef]
- Fedi, M.; Quarta, T. Wavelet analysis for the regional-residual and local separation of potential field anomalies. Geophys. Prospect. 1998, 46, 507–525. [Google Scholar] [CrossRef]
- Fedi, M.; Florio, G. Decorrugation and removal of directional trends of magnetic fields by the wavelet transform: Application to archaeological areas. Geophys. Prospect. 2003, 51, 261–272. [Google Scholar] [CrossRef]
- Sowerbutts, W.T.C. The use of geophysical methods to locate joints in underground metal pipelines. Q. J. Eng. Geol. Hydrogeol. 1988, 21, 273–281. [Google Scholar] [CrossRef]
- Slack, H.; Lynch, V.M.; Langan, L. The geomagnetic gradiometer. Geophysics 1967, 32, 877–892. [Google Scholar] [CrossRef]
- Blakely, R.J. Potential Theory in Gravity and Magnetic Applications; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
Feature | MagNimbus-Based | MagArrow-Based |
---|---|---|
Magnetometer type | QTFM Gen-2 dual sensor | MFAM |
Mounting configuration | Rigidly mounted above and below the UAV | Suspended 3 m below UAV via rope |
Sensor-to-drone distance | 0.5 and 1 m | 3 m |
Flight stability | High: stable rigid structure | Reduced: subject to swinging oscillations |
Sensitivity | 0.003 nT | 1 pT/√Hz |
Sampling rate | 200 Hz | 1000 Hz |
Altitude control system | Radar altimeter | DTM |
Yaw | Variable: 180° rotation between lines | Fixed |
Vertical gradient acquisition | Single flight | Two flights at different altitudes |
Electromagnetic interference | Moderate to high | Very low |
Operational efficiency | Higher: one flight for gradient analysis | Lower: two flights for gradient analysis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Accomando, F.; Barone, A.; Mercogliano, F.; Milano, M.; Vitale, A.; Castaldo, R.; Tizzani, P. Advances in Magnetic UAV Sensing: A Comparative Study of the MagNimbus and MagArrow Magnetometers. Sensors 2025, 25, 6076. https://doi.org/10.3390/s25196076
Accomando F, Barone A, Mercogliano F, Milano M, Vitale A, Castaldo R, Tizzani P. Advances in Magnetic UAV Sensing: A Comparative Study of the MagNimbus and MagArrow Magnetometers. Sensors. 2025; 25(19):6076. https://doi.org/10.3390/s25196076
Chicago/Turabian StyleAccomando, Filippo, Andrea Barone, Francesco Mercogliano, Maurizio Milano, Andrea Vitale, Raffaele Castaldo, and Pietro Tizzani. 2025. "Advances in Magnetic UAV Sensing: A Comparative Study of the MagNimbus and MagArrow Magnetometers" Sensors 25, no. 19: 6076. https://doi.org/10.3390/s25196076
APA StyleAccomando, F., Barone, A., Mercogliano, F., Milano, M., Vitale, A., Castaldo, R., & Tizzani, P. (2025). Advances in Magnetic UAV Sensing: A Comparative Study of the MagNimbus and MagArrow Magnetometers. Sensors, 25(19), 6076. https://doi.org/10.3390/s25196076