The Impact of Chinese Martial Arts Sanda Training on Cognitive Control and ERP: An EEG Sensors Study
Abstract
1. Introduction
- N200: A fronto-central negativity peaking 200–350 ms post-stimulus, generated primarily in the anterior cingulate cortex (ACC). Larger N200 amplitudes have been consistently linked to increased conflict monitoring or control recruitment [22].
- P300: A centro-parietal positivity reflecting attentional resource allocation and working-memory updating. Larger P300 amplitudes generally index greater allocation of processing resources to task-relevant information [22].
- N400: A centro-parietal negativity (350–450 ms) sensitive to semantic integration difficulty. Reduced N400 amplitudes are typically interpreted as more efficient semantic processing and suppression of interference [22].
2. Methods
2.1. Participants
2.2. Experimental Design
2.3. Experimental Procedure
2.4. Measurement Indicators
- Behavioral Indicators: These included reaction time and accuracy. Reaction time was defined as the time interval from stimulus presentation to participants’ key-press response. Accuracy was defined as the proportion of correctly judged trials out of the total number of trials.
- ERP Indicators: These included the amplitude of ERP components such as N200, P300, and N400. The time window for N200 was 250–350 ms after stimulus presentation, with electrode sites selected at the mid-frontal region (FPz, Fz, and FCz). The time window for P300 was 300–400 ms after stimulus presentation, with electrode sites selected at the mid-parietal region (Cz, CPz, and Pz). The time window for N400 was 350–450 ms after stimulus presentation, with electrode sites selected at the mid-parietal region (Cz, CPz, and Pz).
2.5. Statistical Analysis
2.5.1. Behavioral Data Analysis
2.5.2. ERP Data Analysis
3. Results
3.1. Behavioral Results
3.1.1. Reaction Time
3.1.2. Accuracy
3.2. ERP Results
3.2.1. N200 Component
3.2.2. P300 Component
3.2.3. N400 Component
3.2.4. Correlation Analysis Between ERP and Behavior
- Athletes
- College Students
4. Discussion
4.1. Behavioral
4.2. ERP
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Friedman, N.P.; Robbins, T.W. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2022, 47, 72–89. [Google Scholar] [CrossRef]
- Nee, D.E. Integrative frontal-parietal dynamics supporting cognitive control. eLife 2021, 10, e57244. [Google Scholar] [CrossRef]
- Ferrazzoli, D.; Ortelli, P.; Madeo, G.; Giladi, N.; Petzinger, G.M.; Frazzitta, G. Basal ganglia and beyond: The interplay between motor and cognitive aspects in Parkinson’s disease rehabilitation. Neurosci. Biobehav. Rev. 2018, 90, 294–308. [Google Scholar] [CrossRef]
- Pagnotta, M.F.; Riddle, J.; D’ESposito, M. Multimodal neuroimaging of hierarchical cognitive control. Biol. Psychol. 2024, 193, 108896. [Google Scholar] [CrossRef]
- Overman, M.J.; Sarrazin, V.; Browning, M.; O’SHea, J. Stimulating human prefrontal cortex increases reward learning. NeuroImage 2023, 271, 120029. [Google Scholar] [CrossRef]
- Monosov, I.E.; Rushworth, M.F.S. Interactions between ventrolateral prefrontal and anterior cingulate cortex during learning and behavioural change. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2022, 47, 196–210. [Google Scholar] [CrossRef] [PubMed]
- Southon, C. The relationship between executive function, neurodevelopmental disorder traits, and academic achievement in university students. Front. Psychol. 2022, 13, 958013. [Google Scholar] [CrossRef] [PubMed]
- Coumans, J.M.J.; Danner, U.N.; Hadjigeorgiou, C.; Hebestreit, A.; Hunsberger, M.; Intemann, T.; Lauria, F.; Michels, N.; Kurdiné, E.M.; Moreno, L.A.; et al. Emotion-driven impulsiveness but not decision-making ability and cognitive inflexibility predicts weight status in adults. Appetite 2019, 142, 104367. [Google Scholar] [CrossRef] [PubMed]
- Moutoussis, M.; Garzón, B.; Neufeld, S.; Bach, D.R.; Rigoli, F.; Goodyer, I.; Bullmore, E.; Guitart-Masip, M.; Dolan, R.J.; Fonagy, P.; et al. Decision-making ability, psychopathology, and brain connectivity. Neuron 2021, 109, 2025–2040.e7. [Google Scholar] [CrossRef]
- Hötting, K.; Röder, B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 2013, 37 Pt B, 2243–2257. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Meng, Q.; Yao, W.; Guo, S.; Liu, H.; Wang, R.; Meng, J.; Xu, M. Aerobic Exercise Changes Low-Frequency Functional and Effective Connectivity in Cognitive Load Task. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society, Annual International Conference, Sydney, Australia, 24–27 July 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Mellow, M.L.; Goldsworthy, M.R.; Coussens, S.; Smith, A.E. Acute aerobic exercise and neuroplasticity of the motor cortex: A systematic review. J. Sci. Med. Sport 2020, 23, 408–414. [Google Scholar] [CrossRef]
- Singh, A.M.; Staines, W.R. The effects of acute aerobic exercise on the primary motor cortex. J. Mot. Behav. 2015, 47, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Roeh, A.; Schoenfeld, J.; Raab, R.; Landes, V.; Papazova, I.; Haller, B.; Strube, W.; Halle, M.; Falkai, P.; Hasan, A.; et al. Effects of Marathon Running on Cognition and Retinal Vascularization: A Longitudinal Observational Study. Med. Sci. Sports Exerc. 2021, 53, 2207–2214. [Google Scholar] [CrossRef]
- Shoemaker, L.N.; Wilson, L.C.; Lucas, S.J.E.; Machado, L.; Thomas, K.N.; Cotter, J.D. Swimming-related effects on cerebrovascular and cognitive function. Physiol. Rep. 2019, 7, e14247. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Wu, H.; Zhou, X.; Li, F.; Dong, Z.; Wang, H.; Wang, K.; Yu, Q. Neuropsychological impact of Sanda training on athlete attention performance. Front. Psychol. 2024, 15, 1400835. [Google Scholar] [CrossRef] [PubMed]
- Quan, G.; Xiao, H.; Chen, Y. Exploring the mechanisms influencing psychological adaptation in athletes in high-risk sports: A moderated mediation model. Sci. Rep. 2025, 15, 2259. [Google Scholar] [CrossRef]
- Ke, X.-Y.; Hou, W.; Huang, Q.; Hou, X.; Bao, X.-Y.; Kong, W.-X.; Li, C.-X.; Qiu, Y.-Q.; Hu, S.-Y.; Dong, L.-H. Advances in electrical impedance tomography-based brain imaging. Mil. Med. Res. 2022, 9, 10. [Google Scholar] [CrossRef]
- Xu, S.; Momin, M.; Ahmed, S.; Hossain, A.; Veeramuthu, L.; Pandiyan, A.; Kuo, C.C.; Zhou, T. Illuminating the Brain: Advances and Perspectives in Optoelectronics for Neural Activity Monitoring and Modulation. Adv. Mater. 2023, 35, e2303267. [Google Scholar] [CrossRef]
- Pires, L.; Leitão, J.; Guerrini, C.; Simões, M.R. Event-related brain potentials in the study of inhibition: Cognitive control, source localization and age-related modulations. Neuropsychol. Rev. 2014, 24, 461–490. [Google Scholar] [CrossRef]
- Penengo, C.; Colli, C.; Bonivento, C.; Boscutti, A.; Balestrieri, M.; Delvecchio, G.; Brambilla, P. Auditory event-related electroencephalographic potentials in borderline personality disorder. J. Affect. Disord. 2022, 296, 454–464. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, F.; Zhao, Q.; Ding, Y.; Lu, Y. Cognitive mechanisms and temporal dynamics of negative emotion in facilitating congruency judgments. NeuroImage 2025, 315, 121276. [Google Scholar] [CrossRef] [PubMed]
- Coel, R.A.; Pujalte, G.G.A.; Applewhite, A.I.; Zaslow, T.; Cooper, G.; Ton, A.N.; Benjamin, H.J. Sleep and the Young Athlete. Sports Health 2023, 15, 537–546. [Google Scholar] [CrossRef]
- Li, G.; Wu, W.; Zhen, K.; Zhang, S.; Chen, Z.; Lv, Y.; Hou, X.; Yu, L. Effects of different drop height training on lower limb explosive and change of direction performance in collegiate Sanda athletes. iScience 2023, 26, 107972. [Google Scholar] [CrossRef] [PubMed]
- Perrone, S.; Rinaldi, L.; Gatti, D.; Girelli, L. Temporal perception in closed-skill sports: An experimental study on expert swimmers and runners. Psychol. Sport Exerc. 2023, 69, 102500. [Google Scholar] [CrossRef]
- Lockwood, P.L.; Wittmann, M.K. Ventral anterior cingulate cortex and social decision-making. Neurosci. Biobehav. Rev. 2018, 92, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, J.P. P300 in detecting concealed information and deception: A review. Psychophysiology 2020, 57, e13362. [Google Scholar] [CrossRef]
- Neubauer, A.C.; Fink, A. Intelligence and neural efficiency. Neurosci. Biobehav. Rev. 2009, 33, 1004–1023. [Google Scholar] [CrossRef]
- Morett, L.M.; Landi, N.; Irwin, J.; McPartland, J.C. N400 amplitude, latency, and variability reflect temporal integration of beat gesture and pitch accent during language processing. Brain Res. 2020, 1747, 147059. [Google Scholar] [CrossRef]
- Ramos-Loyo, J.; González-Garrido, A.A.; Llamas-Alonso, L.A.; Sequeira, H. Sex differences in cognitive processing: An integrative review of electrophysiological findings. Biol. Psychol. 2022, 172, 108370. [Google Scholar] [CrossRef]
Experimental Condition | Sanda Athletes (n = 19) | Ordinary College Students (n = 19) | F-Value | p-Value | η2 |
---|---|---|---|---|---|
cC | 596.21 ± 58.59 | 669.80 ± 67.44 | 9.23 | 0.004 | 0.204 |
cI | 667.72 ± 53.34 | 726.31 ± 90.42 | 4.21 | 0.048 | 0.105 |
iC | 622.13 ± 57.97 | 674.81 ± 71.85 | 6.79 | 0.012 | 0.159 |
iI | 639.26 ± 37.26 | 701.46 ± 77.07 | 5.95 | 0.020 | 0.142 |
Experimental Condition | Sanda Athletes (n = 19) | Ordinary College Students (n = 19) | F-Value | p-Value | η2 |
---|---|---|---|---|---|
cC | 0.956 ± 0.04 | 0.947 ± 0.057 | 0.012 | 0.91 | 0.000 |
cI | 0.949 ± 0.039 | 0.956 ± 0.041 | 0.37 | 0.773 | 0.010 |
iC | 0.929 ± 0.051 | 0.937 ± 0.067 | 0.61 | 0.44 | 0.016 |
iI | 0.964 ± 0.039 | 0.964 ± 0.047 | 0.006 | 0.940 | 0.000 |
Experimental Condition | Sanda Athletes (n = 19) | Ordinary College Students (n = 19) | F-Value | p-Value | η2 |
---|---|---|---|---|---|
cC | 2.845 ± 4.534 | 3.750 ± 4.688 | 4.31 | 0.006 | 0.107 |
cI | 2.070 ± 4.004 | 3.057 ± 4.120 | 13.078 | <0.001 | 0.267 |
iC | 2.400 ± 4.775 | 3.321 ± 4.573 | 4.82 | 0.003 | 0.118 |
iI | 2.379 ± 4.222 | 3.312 ± 4.139 | 6.60 | 0.014 | 0.155 |
Experimental Condition | Sanda Athletes (n = 19) | Ordinary College Students (n = 19) | F-Value | p-Value | η2 |
---|---|---|---|---|---|
cC | 5.945 ± 3.500 | 5.161 ± 3.434 | 4.82 | 0.003 | 0.118 |
cI | 7.191 ± 4.555 | 6.122 ± 4.062 | 6.60 | 0.014 | 0.155 |
iC | 6.315 ± 4.083 | 5.404 ± 4.146 | 4.31 | 0.006 | 0.107 |
iI | 6.641 ± 4.003 | 5.483 ± 3.637 | 13.078 | <0.001 | 0.267 |
Experimental Condition | Sanda Athletes (n = 19) | Ordinary College Students (n = 19) | F-Value | p-Value | η2 |
---|---|---|---|---|---|
cC | 7.718 ± 4.773 | 6.670 ± 4.709 | 9.78 | <0.001 | 0.214 |
cI | 5.883 ± 4.050 | 5.002 ± 4.228 | 4.289 | 0.046 | 0.106 |
iC | 6.683 ± 4.400 | 5.421 ± 4.163 | 3.51 | 0.018 | 0.089 |
iI | 6.603 ± 4.402 | 5.864 ± 4.537 | 4.12 | 0.050 | 0.103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, H.; Jiang, H. The Impact of Chinese Martial Arts Sanda Training on Cognitive Control and ERP: An EEG Sensors Study. Sensors 2025, 25, 5996. https://doi.org/10.3390/s25195996
Li Y, Li H, Jiang H. The Impact of Chinese Martial Arts Sanda Training on Cognitive Control and ERP: An EEG Sensors Study. Sensors. 2025; 25(19):5996. https://doi.org/10.3390/s25195996
Chicago/Turabian StyleLi, Yanan, Haojie Li, and Haidong Jiang. 2025. "The Impact of Chinese Martial Arts Sanda Training on Cognitive Control and ERP: An EEG Sensors Study" Sensors 25, no. 19: 5996. https://doi.org/10.3390/s25195996
APA StyleLi, Y., Li, H., & Jiang, H. (2025). The Impact of Chinese Martial Arts Sanda Training on Cognitive Control and ERP: An EEG Sensors Study. Sensors, 25(19), 5996. https://doi.org/10.3390/s25195996