Design of a Cylindrical Megahertz Miniature Ultrasonic Welding Oscillator
Abstract
1. Introduction
2. Acoustic Matching Layer for Piezoelectric Oscillators
- (1)
- Internal material loss: During sound wave propagation in actual media, energy dissipation occurs due to internal friction (viscosity) and thermal conduction within the material, manifesting as sound wave attenuation. This derivation assumes the medium is an ideal elastic body, disregarding the influence of the attenuation coefficient.
- (2)
- In practical systems, partial energy is radiated into the surrounding environment as sound waves due to mismatch between the radiating impedance and the load impedance, resulting in energy loss. This model idealizes energy transfer efficiency solely through the acoustic transmission coefficient.
3. Finite Element Simulation (Ansys 2023)
3.1. Modal Analysis
3.2. Harmonic Response Analysis (Physics)
4. Experimentation and Testing of Welded Oscillators
4.1. Vibration Characterization of Ultrasonic Welding Oscillators
4.2. Study of Ultrasonic Welding Characteristics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Cheng, J. Progress of ultrasonic welding of advanced polymer matrix composites. Polym. Mater. Sci. Eng. 2023, 39, 166–173. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Gohel, G.; Leong, K.F.; Islam, A. Advances in ultrasonic welding of thermoplastic composites. A Review. Materials 2020, 13, 1284. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.L.; Yang, J.J.; Hao, Y.X.; Chen, L.F. Ultrasonic spot welding of aluminum to copper: A review. Int. J. Adv. Manuf. Technol. 2020, 107, 585–606. [Google Scholar] [CrossRef]
- Raza, S.F.; Khan, S.A. Optimizing the weld factors affecting ultrasonic welding of thermoplastics. Int. J. Adv. Manuf. Technol. 2019, 103, 2053–2067. [Google Scholar] [CrossRef]
- Jiromaru, T.; Ueoka, T. New methods of ultrasonic welding of metal and plastic materials. Ultrasonics 1996, 34, 177–185. [Google Scholar] [CrossRef]
- Sundukov, S.K. Influence of Ultrasonic Vibrations on the Formation of a Welding Seam. Russ. Eng. Res. 2024, 44, 507–512. [Google Scholar] [CrossRef]
- Miyama, T.; Nada, T. Investigation for Tonpilz Piezoelectric Transducers with Acoustic Matching Plates. In Proceedings of the IEEE 1987 Ultrasonics Symposium, Denver, CO, USA, 14–16 October 1987; pp. 779–784. [Google Scholar] [CrossRef]
- Jung, J.; Lee, W. Review of piezoelectric micromachined ultrasonic transducers and their applications. J. Micromech. Microeng. 2017, 27, 113001. [Google Scholar] [CrossRef]
- Guo, X.Y. Research and Design of Miniature Piezoelectric Ultrasonic Transducer. Master’s Thesis, Taiyuan North Central University, Taiyuan, China, 2015. [Google Scholar]
- Raza, S.F. Ultrasonic Welding of Thermoplastics. Ph.D. Dissertation, Department of Mechanical Engineering University Sheffield, Sheffield, UK, 2015. [Google Scholar]
- Wagner, G.; Balle, F. Ultrasonic Welding of Hybrid Joints. JOM 2012, 64, 401–406. [Google Scholar] [CrossRef]
- Lin, K.Y.; Pi, J. Effect of stepwise amplitude on the strength of ultrasonically welded joints of thin metals. Mech. Eng. Mater. 2015, 39, 22–25+29. [Google Scholar]
- Tsujino, J.; Hongoh, M.; Yoshikuni, M.; Miura, H.; Ueoka, T. Frequency characteristics of ultrasonic plastic welding. JSME Int. J. Ser. C 2006, 49, 634–641. [Google Scholar] [CrossRef]
- Naruse, K.; Watanabe, Y. Ultrasonic Plastic Welding at 1.2 MHz using a Surface Acoustic Wave Device. Jpn. J. Appl. Phys. 2006, 45, 4812–4815. [Google Scholar] [CrossRef]
- He, C.S.; Li, J.C. Theoretical analysis and application study of circular piezoelectric oscillator. Mech. Res. Appl. 2021, 34, 12–14. [Google Scholar]
- Naruse, K.; Mori, K. Ultrasonic joining of Au foil using a 2.5 MHz surface acoustic wave device. Jpn. J. Appl. Phys. 2008, 47, 4305. [Google Scholar] [CrossRef]
- Zhang, D.J.; Xu, A.J. Vibration analysis and experimental study of circular piezoelectric oscillators. J. Chang. Univ. 2019, 29, 1–5. [Google Scholar]
- Inoue, T.; Ohta, M. Design of ultrasonic transducers with multiple acoustic matching layers for medical application. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1987, 34, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Juarez, J.A.; Rodriguez-Corral, G. An ultrasonic transducer for high power applications in gases. Ultrasonics 1978, 16, 267–271. [Google Scholar] [CrossRef]
- Parrini, L. Design of advanced ultrasonic transducers for welding devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 8, 1632–1639. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; Wu, T.E.; Lai, C.H. Automated Detection of Arc Welding Defects by Using a Convolutional Neural Network Model. J. Chin. Soc. Mech. Eng. 2025, 46, 205–210. [Google Scholar]
- Dong, Z.; Shao, C. Fine-Scale Characterization and Monitoring of Tool Surface Degradation in Ultrasonic Metal Welding Using Optical Measurements and Computer Vision. J. Comput. Inf. Sci. Eng. 2025, 25, 111001. [Google Scholar] [CrossRef]
System | Frequency | Scale | Approx. Energy Per Weld | Key Feature/Limitation |
---|---|---|---|---|
Conventional System | 28 kHz | Φ100 × 200 | 150 J | Large size, high power, suitable for macro-parts. |
Parrini et al. [20] | 125 kHz | High frequency but long joining time. | ||
SAW System | 1.2 MHz | High frequency, zero radial displacement. | ||
This Work | 1.76 MHz | Φ28 × 18 | 65.8 J | Miniaturized, energy-efficient, precise for micro-welding. |
Medium | Wave Number (m−1) | Acoustic Impedance Value (106 N·s/m3) |
---|---|---|
PZT-4 | 2670 | 32.072 |
Aluminum | 1690 | 18.495 |
PVC | 5341 | 3.343 |
Wavelength | Matching Layer Thickness (mm) |
---|---|
0.74 | |
2.23 | |
3.71 | |
5.19 |
Piezoelectric Ceramic Components | Parameters |
---|---|
Dimensions | Diameter Φ: 20 mm; Electrode face diameter Φ: 13 mm; Thickness T: 1.2 mm; |
Materials | Oscillator density: ρ = 7559 kg/m2; Poisson ratio: σ = 0.32 |
Spring constant | C11 = 13.9, C12 = 7.78 C13 = 7.43, C33 = 11.5, C44 = 2.56, C66 = 3.06 |
Piezoelectric stress | e15 = 12.7, e31 = −5.2, e33 = −15.1 |
Dielectric constant | ε11ᵀ = 3.276, ε33 = 5.622 |
Young’s modulus | Anisotropic |
Young’s Modulus | 72 GPa | Modal Analysis Solver | Block Lanczos Solver |
---|---|---|---|
Poisson ratio | 0.33 | Harmonic Response Analysis | Mode Superposition |
Density | 2700 kg/m3 | Unit Type | SOLID45 |
Lower cylindrical end face | Fixed Constraint | Unit Size | Maximum dimension ≤ λ/10 ≈ 0.36 mm |
Excitation voltage | 48 V | Grid Convergence | Ensure amplitude variation remains below 2% after mesh refinement. |
Grounding electrode | lower surface | Structural Damping Coefficient | 0.005 |
stimulation electrode | Upper surface |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Chen, Y.; Li, M.; Yang, J.; Xi, S. Design of a Cylindrical Megahertz Miniature Ultrasonic Welding Oscillator. Sensors 2025, 25, 5922. https://doi.org/10.3390/s25185922
Yang G, Chen Y, Li M, Yang J, Xi S. Design of a Cylindrical Megahertz Miniature Ultrasonic Welding Oscillator. Sensors. 2025; 25(18):5922. https://doi.org/10.3390/s25185922
Chicago/Turabian StyleYang, Guang, Ye Chen, Minghang Li, Junlin Yang, and Shengyang Xi. 2025. "Design of a Cylindrical Megahertz Miniature Ultrasonic Welding Oscillator" Sensors 25, no. 18: 5922. https://doi.org/10.3390/s25185922
APA StyleYang, G., Chen, Y., Li, M., Yang, J., & Xi, S. (2025). Design of a Cylindrical Megahertz Miniature Ultrasonic Welding Oscillator. Sensors, 25(18), 5922. https://doi.org/10.3390/s25185922