Real-Time Object Classification via Dual-Pixel Measurement
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Numerical Simulation
3.2. Experimental Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SPI | Single-pixel imaging |
DMD | Digital micromirror device |
SLM | Spatial light modulator |
PMT | Photomultiplier tube |
DAQ | Data acquisition system |
TIR | Total internal reflection |
RMSE | Root mean square error |
References
- Turner, K.J.; Tzortziou, M.; Grunert, B.K.; Goes, J.; Sherman, J. Optical classification of an urbanized estuary using hyperspectral remote sensing reflectance. Opt. Express 2022, 30, 41590–41612. [Google Scholar] [CrossRef]
- Turay, T.; Vladimirova, T. Toward performing image classification and object detection with convolutional neural networks in autonomous driving systems: A survey. IEEE Access 2022, 10, 14076–14119. [Google Scholar] [CrossRef]
- Dedeoğlu, Y. Moving Object Detection, Tracking and Classification for Smart Video Surveillance. Master’s Thesis, Bilkent Universitesi, Ankara, Turkey, 2004. [Google Scholar]
- Hridoy, M.W.; Rahman, M.M.; Sakib, S. A framework for industrial inspection system using deep learning. Ann. Data Sci. 2024, 11, 445–478. [Google Scholar] [CrossRef]
- Yang, G.; Yao, M.; Li, S.; Zhang, J.; Zhong, J. High-accuracy image-free classification of high-speed rotating objects with fluctuating rotation periods. Appl. Phys. Lett. 2024, 124, 041107. [Google Scholar] [CrossRef]
- McMahon, P.L. The physics of optical computing. Nat. Rev. Phys. 2023, 5, 717–734. [Google Scholar] [CrossRef]
- Bai, B.; Li, Y.; Luo, Y.; Li, X.; Çetintaş, E.; Jarrahi, M.; Ozcan, A. All-optical image classification through unknown random diffusers using a single-pixel diffractive network. Light Sci. Appl. 2023, 12, 69. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Lian, H.; Ding, C.; Liu, H.; Liu, L.; Yang, J. High-frame-rate reconfigurable diffractive neural network based on superpixels. Opt. Lett. 2023, 48, 5025–5028. [Google Scholar] [CrossRef] [PubMed]
- Bian, L.; Wang, H.; Zhu, C.; Zhang, J. Image-free multi-character recognition. Opt. Lett. 2022, 47, 1343–1346. [Google Scholar] [CrossRef]
- Jiao, S.; Feng, J.; Gao, Y.; Lei, T.; Xie, Z.; Yuan, X. Optical machine learning with incoherent light and a single-pixel detector. Opt. Lett. 2019, 44, 5186–5189. [Google Scholar] [CrossRef]
- Edgar, M.P.; Gibson, G.M.; Padgett, M.J. Principles and prospects for single-pixel imaging. Nat. Photonics 2019, 13, 13–20. [Google Scholar] [CrossRef]
- Gibson, G.M.; Johnson, S.D.; Padgett, M.J. Single-pixel imaging 12 years on: A review. Opt. Express 2020, 28, 28190–28208. [Google Scholar] [CrossRef]
- Ji, P.; Wu, Q.; Cao, S.; Zhang, H.; Yang, Z.; Yu, Y. Single-pixel imaging of a moving object with multi-motion. Chin. Opt. Lett. 2024, 22, 101101. [Google Scholar] [CrossRef]
- Li, Y.; Shi, J.; Sun, L.; Wu, X.; Zeng, G. Single-pixel salient object detection via discrete cosine spectrum acquisition and deep learning. IEEE Photonics Technol. Lett. 2020, 32, 1381–1384. [Google Scholar] [CrossRef]
- Latorre-Carmona, P.; Traver, V.J.; Sánchez, J.S.; Tajahuerce, E. Online reconstruction-free single-pixel image classification. Image Vis. Comput. 2019, 86, 28–37. [Google Scholar] [CrossRef]
- Meng, Q.; Lai, W.; Lei, G.; Liu, H.; Cui, W.; Shi, D.; Wang, Y.; Han, K. Fast object imaging and classification based on circular harmonic Fourier moment detection. Opt. Express 2023, 31, 34527–34541. [Google Scholar] [CrossRef]
- Meng, Q.; Lai, W.; Lei, G.; Cui, W.; Liu, H.; Wang, Y.; Han, K. Rapid imaging and classification with single-pixel detector based on radial Tchebichef moments. Opt. Lasers Eng. 2024, 181, 108257. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, J.; Zhang, L.; Xing, F.; Sun, T. Real-time target recognition and multi-motion parameters acquisition via single-pixel detection. Opt. Express 2025, 33, 37204–37219. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, J.; Liu, C.; Wang, C.; Zhang, G.; Ding, Y. Study on Exposure Time Difference Compensation Method for DMD-Based Dual-Path Multi-Target Imaging Spectrometer. Remote Sens. 2025, 17, 2021. [Google Scholar] [CrossRef]
- Liao, S.X.; Pawlak, M. On image analysis by moments. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 254–266. [Google Scholar] [CrossRef]
- Huang, Z.; Leng, J. Analysis of Hu’s moment invariants on image scaling and rotation. In Proceedings of the 2010 2nd International Conference on Computer Engineering and Technology, Chengdu, China, 16–18 April 2010; pp. V7-476–V7-480. [Google Scholar]
- Hu, M.-K. Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 1962, 8, 179–187. [Google Scholar]
- Hosny, K.M. New set of rotationally Legendre moment invariants. Int. J. Electr. Comput. Syst. Eng. 2010, 4, 176–180. [Google Scholar]
- Yang, J.; Liu, X.; Zhang, L.; Zhang, L.; Yan, T.; Fu, S.; Sun, T.; Zhan, H.; Xing, F.; You, Z. Real-time localization and classification of the fast-moving target based on complementary single-pixel detection. Opt. Express 2025, 33, 11301–11316. [Google Scholar] [CrossRef] [PubMed]
- Sikora, T. The MPEG-7 visual standard for content description—An overview. IEEE Trans. Circuits Syst. Video Technol. 2002, 11, 696–702. [Google Scholar] [CrossRef]
Object Type | Average Distance | ||||
---|---|---|---|---|---|
Apple0 | Butterfly0 | Crown0 | Deer0 | Lmfish0 | |
Apple | 0.1377 | 1.7904 | 0.5275 | 2.2612 | 2.5639 |
Butterfly | 1.8443 | 0.0741 | 1.4515 | 0.4512 | 0.7365 |
Crown | 0.6666 | 1.4585 | 0.1251 | 1.8700 | 2.2151 |
Deer | 2.3799 | 0.6006 | 1.9496 | 0.1027 | 0.3141 |
Lmfish | 2.5929 | 0.7953 | 2.2035 | 0.4015 | 0.0484 |
Object Type | Classification Accuracy | |
---|---|---|
Our Method | Previous Method [24] | |
30 | 96.7% | 93.3% |
50 | 90% | 82% |
70 | 81.4% | 68.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Chen, R.; Peng, Y.; Zhang, L.; Sun, T.; Xing, F. Real-Time Object Classification via Dual-Pixel Measurement. Sensors 2025, 25, 5886. https://doi.org/10.3390/s25185886
Yang J, Chen R, Peng Y, Zhang L, Sun T, Xing F. Real-Time Object Classification via Dual-Pixel Measurement. Sensors. 2025; 25(18):5886. https://doi.org/10.3390/s25185886
Chicago/Turabian StyleYang, Jianing, Ran Chen, Yicheng Peng, Lingyun Zhang, Ting Sun, and Fei Xing. 2025. "Real-Time Object Classification via Dual-Pixel Measurement" Sensors 25, no. 18: 5886. https://doi.org/10.3390/s25185886
APA StyleYang, J., Chen, R., Peng, Y., Zhang, L., Sun, T., & Xing, F. (2025). Real-Time Object Classification via Dual-Pixel Measurement. Sensors, 25(18), 5886. https://doi.org/10.3390/s25185886