Determination of the Cutoff Frequency of Smoothing Filters for Center of Pressure (COP) Data via Kinetic Energy in Standing Dogs
Abstract
Highlights
- An upper limit of the kinetic energy can be directly used to define the cutoff frequency for the low-pass filter to smooth motion data.
- Our biologically motivated approach leads to a similar recommendation for the cutoff frequency for stationary dogs as the engineering-based approach but is easy to define because of the energy limit.
- Smoothing filters are necessary to reduce noise, eliminate outliers, and prepare the data for further analysis or visualization.
- A critical factor in applying such filters is the choice of cutoff frequency, which directly influences the quality and interpretability of the filtered data.
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals and Inclusion Criteria
2.3. Equipment and Measurement Procedure
2.4. Objective Gait Analysis
2.5. Static Posturography
2.6. Data Analysis
2.7. Statistics
3. Results
4. Discussion
Limitations of the Methods and the Role of Frequency
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COP | Center of Pressure |
VBL | Values below the Limit |
FLS | Fractional lifespan |
m | Male |
f | Female |
fc | Female castrated |
M | Measurement |
References
- Błaszczyk, J.W.; Beck, M.; Szczepańska, J.; Sadowska, D.; Bacik, B.; Juras, G.; Słomka, K.J. Directional measures of postural sway as predictors of balance instability and accidental falls. J. Hum. Kinet. 2016, 52, 75–83. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological; Waterloo Biomechanics Press: Waterloo, ON, Canada, 1991. [Google Scholar]
- Roewer, B.D.; Ford, K.R.; Myer, G.D.; Hewett, T.E. The ‘impact’ of force filtering cut-off frequency on the peak knee abduction moment during landing: Artefact or ‘artifiction’? Br. J. Sports Med. 2012, 48, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.C.; Luna, N.M.S.; Mochizuki, L.; Barbieri, F.; Santos, S.; Greve, J.M.D. The influence of anthropometric factors on postural balance: The relationship between body composition and posturographic measurements in young adults. Clinics 2012, 67, 1433–1441. [Google Scholar] [CrossRef]
- Kirchner, M.; Schubert, P.; Getrost, T.; Haas, C.T. Effect of altered surfaces on postural sway characteristics in elderly subjects. Hum. Mov. Sci. 2013, 32, 1467–1479. [Google Scholar] [CrossRef]
- Mansfield, A.; Mochizuki, G.; Inness, E.L.; McIlroy, W.E. Clinical correlates of between-limb synchronization of standing balance control and falls during inpatient stroke rehabilitation. Neurorehabil Neural Repair. 2012, 26, 627–635. [Google Scholar] [CrossRef]
- Quijoux, F.; Nicolaï, A.; Chairi, I.; Bargiotas, I.; Ricard, D.; Yelnik, A.; Oudre, L.; Bertin-Hugault, F.; Vidal, P.P.; Vayatis, N.; et al. A review of center of pressure (COP) variables to quantify standing balance in elderly people: Algorithms and open-access code. Physiol. Rep. 2021, 9, e15067. [Google Scholar] [CrossRef] [PubMed]
- Ellis, K.L.; King, M.R. Relationship Between Postural Stability and Paraspinal Muscle Adaptation in Lame Horses Undergoing Rehabilitation. J. Equine Vet. Sci. 2020, 91, 103108. [Google Scholar] [CrossRef]
- Moorman, V.J.; Kawcak, C.E.; King, M.R. Evaluation of a portable media device for use in determining postural stability in standing horses. Am. J. Vet. Res. 2017, 78, 1036–1042. [Google Scholar] [CrossRef]
- Błaszczyk, J.W.; Beck, M.; Sadowska, D. Assessment of postural stability in young healthy subjects based on directional features of posturographic data: Vision and gender effects. Acta Neurobiol. Exp. 2014, 74, 433–442. [Google Scholar] [CrossRef]
- Błaszczyk, J.W.; Orawiec, R. Assessment of postural control in patients with Parkinson’s disease: Sway ratio analysis. Hum. Mov. Sci. 2011, 30, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Bergamin, M.; Gobbo, S.; Zanotto, T.; Sieverdes, J.C.; Alberton, C.L.; Zaccaria, M.; Ermolao, A. Influence of age on postural sway during different dual-task conditions. Front. Aging Neurosci. 2014, 6, 477. [Google Scholar] [CrossRef]
- Baloh, R.W.; Jacobson, K.M.; Enrietto, J.A.; Corona, S.; Honrubia, V. Balance disorders in older persons: Quantification with posturography. Otolaryngol. Head. Neck Surg. 1998, 119, 89–92. [Google Scholar] [CrossRef]
- Leinonen, V.; Kankaanpää, M.; Luukkonen, M.; Kansanen, M.; Hänninen, O.; Airaksinen, O.; Taimela, S. Lumbar Paraspinal Muscle Function, Perception of Lumbar Position, and Postural Control in Disc Herniation-Related Back Pain. Spine 2003, 28, 842–848. [Google Scholar] [CrossRef]
- Mondino, A.; Wagner, G.; Russell, K.; Lobaton, E.; Griffith, E.; Gruen, M.; Lascelles, B.D.X.; Olby, N.J. Static posturography as a novel measure of the effects of aging on postural control in dogs. PLoS ONE 2022, 17, e0268390. [Google Scholar] [CrossRef]
- Lutonsky, C.; Peham, C.; Affenzeller, N.; Aghapour, M.; Wegscheider, J.; Tichy, A.; Bockstahler, B. Impact of Aging and Visual Input on Postural Stability in Dogs: Insights from Center-of-Pressure Analysis. Sensors 2025, 25, 1300. [Google Scholar] [CrossRef] [PubMed]
- Hoyt, D.; Taylor, C. Gait and the energetics of locomotion in horses. Nature 1981, 292, 239–240. [Google Scholar] [CrossRef]
- Mazzatenta, A.; Carluccio, A.; Robbe, D.; Giulio, C.D.; Cellerino, A. The companion dog as a unique translational model for aging. Semin Cell Dev. Biol. 2017, 70, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Greer, K.A.; Canterberry, S.C.; Murphy, K.E. Statistical analysis regarding the effects of height and weight on life span of the domestic dog. Res. Vet. Sci. 2007, 82, 208–214. [Google Scholar] [CrossRef]
- Wrightson, R.; Albertini, M.; Pirrone, F.; McPeake, K.; Piotti, P. The Relationship between Signs of Medical Conditions and Cognitive Decline in Senior Dogs. Animals 2023, 13, 2203. [Google Scholar] [CrossRef]
- Aghapour, M.; Affenzeller, N.; Lutonsky, C.; Peham, C.; Tichy, A.; Bockstahler, B. A validation study to analyze the reliability of center of pressure data in static posturography in dogs. Front. Vet. Sci. 2024, 11, 1353824. [Google Scholar] [CrossRef]
- Reicher, B.; Tichy, A.; Bockstahler, B. Center of Pressure in the Paws of Clinically Sound Dogs in Comparison with Orthopedically Diseased Dogs. Animals 2020, 10, 1366. [Google Scholar] [CrossRef]
- Charalambous, D.; Lutonsky, C.; Keider, S.; Tichy, A.; Bockstahler, B. Vertical ground reaction forces, paw pressure distribution, and center of pressure during heelwork in working dogs competing in obedience. Front. Vet. Sci. 2023, 10, 1106170. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Willsky, A.S.; Nawab, H. Signals and Systems; Signal Processing Series; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1996. [Google Scholar]
- Peham, C.; Licka, T.F.; Scheidl, M. Evaluation of a signal-adapted filter for processing of periodic electromyography signals in horses walking on a treadmill. Am. J. Vet. Res. 2001, 62, 1687–1689. [Google Scholar] [CrossRef]
- Hall, H.; Evans, R.B.; Balogh, M.; Gordon-Evans, W.J. Evaluation of Change in Center of Pressure During Perturbation of Balance Including Blindfolding in Healthy Dogs. Animals 2025, 15, 1790. [Google Scholar] [CrossRef]
- Lacour, J.R.; Bourdin, M. Factors affecting the energy cost of level running at submaximal speed. Eur. J. Appl. Physiol. 2015, 115, 651–673. [Google Scholar] [CrossRef]
- Fagundes Loss, J.; de Souza da Silva, L.; Ferreira Miranda, I.; Groisman, S.; Santiago Wagner Neto, E.; Souza, C.; Tarragô Candotti, C. Immediate effects of a lumbar spine manipulation on pain sensitivity and postural control in individuals with nonspecific low back pain: A randomized controlled trial. Chiropr. Man. Ther. 2020, 28, 25. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Conforto, S.; Bibbo, D.; D’Alessio, T. Respiration and postural sway: Detection of phase synchronizations and interactions. Hum. Mov. Sci. 2004, 23, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Aubry, A.; Yan, T. Meta-analysis of calorimeter data to establish relationships between methane and carbon dioxide emissions or oxygen consumption for dairy cattle. Anim. Nutr. 2015, 1, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Nauwelaerts, S.; Malone, S.R.; Clayton, H.M. Development of postural balance in foals. Vet. J. 2013, 198, e70–e74. [Google Scholar] [CrossRef]
Dog | Breed | Sex | Age [Years] | Mass [Kg] | Limit of Kinetic Energy [Kg × cm2/s2 = 10−4 Nm] |
---|---|---|---|---|---|
1 | Mixed-breed | fc | 2.7 | 13.2 | 165.00 |
2 | Standard Poodle | m | 6.0 | 26.0 | 325.00 |
3 | Border Collie | m | 5.9 | 24.0 | 300.00 |
4 | Flat-Coated Retriever | m | 1.1 | 32.5 | 406.25 |
5 | Labrador | f | 2.1 | 20.7 | 258.75 |
6 | Border Collie | f | 2.0 | 16.0 | 200.00 |
7 | Malinois | f | 3.9 | 20.6 | 257.50 |
8 | Irish Setter | m | 5.9 | 21.0 | 262.50 |
9 | Labrador | f | 1.3 | 20.9 | 261.25 |
10 | Labrador | f | 3.5 | 21.3 | 266.25 |
11 | Pointer | fc | 2.2 | 26.0 | 325.00 |
12 | Labrador | m | 4.1 | 30.0 | 375.00 |
Dogs | VBL | VBL6 | VBL10 | VBL [%] | VBL6 [%] | VBL10 [%] |
---|---|---|---|---|---|---|
1 | 284 | 996 | 986 | 28.4 | 99.6 | 98.6 |
2 | 280 | 999 | 985 | 28.0 | 99.9 | 98.5 |
3 | 270 | 993 | 924 | 27.0 | 99.3 | 92.4 |
4 | 276 | 959 | 868 | 27.6 | 95.9 | 86.8 |
5 | 267 | 999 | 963 | 26.7 | 99.9 | 96.3 |
6 | 194 | 993 | 929 | 19.4 | 99.3 | 92.9 |
7 | 265 | 994 | 951 | 26.5 | 99.4 | 95.1 |
8 | 347 | 999 | 997 | 34.7 | 99.9 | 99.7 |
9 | 242 | 997 | 974 | 24.2 | 99.7 | 97.4 |
10 | 245 | 995 | 930 | 24.5 | 99.5 | 93.0 |
11 | 295 | 919 | 849 | 29.5 | 91.9 | 84.9 |
12 | 304 | 711 | 660 | 30.4 | 71.1 | 66.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wegscheider, J.; Lutonsky, C.; Affenzeller, N.; Aghapour, M.; Bockstahler, B.; Peham, C. Determination of the Cutoff Frequency of Smoothing Filters for Center of Pressure (COP) Data via Kinetic Energy in Standing Dogs. Sensors 2025, 25, 5843. https://doi.org/10.3390/s25185843
Wegscheider J, Lutonsky C, Affenzeller N, Aghapour M, Bockstahler B, Peham C. Determination of the Cutoff Frequency of Smoothing Filters for Center of Pressure (COP) Data via Kinetic Energy in Standing Dogs. Sensors. 2025; 25(18):5843. https://doi.org/10.3390/s25185843
Chicago/Turabian StyleWegscheider, Julia, Christiane Lutonsky, Nadja Affenzeller, Masoud Aghapour, Barbara Bockstahler, and Christian Peham. 2025. "Determination of the Cutoff Frequency of Smoothing Filters for Center of Pressure (COP) Data via Kinetic Energy in Standing Dogs" Sensors 25, no. 18: 5843. https://doi.org/10.3390/s25185843
APA StyleWegscheider, J., Lutonsky, C., Affenzeller, N., Aghapour, M., Bockstahler, B., & Peham, C. (2025). Determination of the Cutoff Frequency of Smoothing Filters for Center of Pressure (COP) Data via Kinetic Energy in Standing Dogs. Sensors, 25(18), 5843. https://doi.org/10.3390/s25185843