Validity of a Novel Algorithm to Compute Spatiotemporal Parameters Based on a Single IMU Placed on the Lumbar Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Wearable Inertial System for Gait Analysis
2.2. Study Population and Gait Protocol
2.3. Data Processing and Gait Event Detection Algorithm
- Gait cycle time (GCT) [s] (1): the time between two consecutive heel-strikes of the same foot;
- Cadence (C) [steps/min] (2): the number of strides in a minute;
- Stance phase (ST) [%] (3): the foot support phase, i.e., from heel-strike to toe-off of the same foot, with duration as a percentage of the gait cycle;
- Swing phase (SW) [%] (4): the foot swing phase, i.e., from toe-off to heel-strike of the same foot, with duration as a percentage of the gait cycle;
- Double-support phase (DS) [%] (6): the duration of the phase of support on both feet as a percentage of the gait cycle;
- -
- k: number of gait cycles;
- -
- TOr: toe-off right;
- -
- HSr: heel-strike right;
- -
- s: steps;
- -
- t: time of walk;
- -
- IDS: initial double support;
- -
- TDS: terminal double support;
- -
- HSl: heel-strike left;
- -
- TOl: toe-off left.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IMU | Inertial measurement unit |
ROI | Region of interest |
GCT | Gait cycle time |
C | Cadence |
ST | Stance phase |
SW | Swing phase |
DS | Double support phase |
k | Number of gait cycles |
TOr | Toe-off right |
HSr | Heel-strike right |
s | Steps |
t | Time of walk |
IDS | Initial double support |
TDS | Terminal double support |
TOl | Toe-off left |
HSl | Heel-strike left |
PB | Passing–Bablok |
BA | Bland–Altman |
std | Standard deviation |
m | slope |
q | intercept |
References
- Cappozzo, A.; Della Croce, U. Human movement analysis using stereophotogrammetry: Part 1: Theoretical background. Gait Posture 2005, 21, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Houmanfar, R.; Karg, M. Movement analysis of rehabilitation exercises: Distance metrics for measuring patient progress. IEEE Syst. J. 2014, 10, 1014–1025. [Google Scholar] [CrossRef]
- Bergamini, E.; Picerno, P. Estimation of temporal parameters during sprint running using a trunk-mounted inertial measurement unit. J. Biomech. 2012, 45, 1123–1126. [Google Scholar] [CrossRef]
- Putri, F.T.; Caesarendra, W. Human walking gait classification utilizing an artificial neural network for the ergonomics study of lower limb prosthetics. Prosthesis 2023, 5, 647–665. [Google Scholar] [CrossRef]
- Donisi, L.; Cesarelli, G. Wearable sensors and artificial intelligence for physical ergonomics: A systematic review of literature. Diagnostics 2022, 12, 3048. [Google Scholar] [CrossRef]
- Donisi, L.; Amitrano, F.; Coccia, A. Influence of the Backpack on School Children’s Gait: A Statistical and Machine Learning Approach. In Proceedings of the 8th European Medical and Biological Engineering Conference, Portorož, Slovenia, 29 November–3 December 2020. [Google Scholar] [CrossRef]
- Prisco, G.; Romano, M. Capability of Machine Learning Algorithms to Classify Safe and Unsafe Postures during Weight Lifting Tasks Using Inertial Sensors. Diagnostics 2024, 14, 576. [Google Scholar] [CrossRef]
- Donisi, L.; Cesarelli, G.; Balbi, P.; Provitera, V.; Lanzillo, B.; Coccia, A.; D’Addio, G. Positive impact of short-term gait rehabilitation in Parkinson patients: A combined approach based on statistics and machine learning. Math. Biosci. Eng. 2021, 18, 6995–7009. [Google Scholar] [CrossRef] [PubMed]
- Muro-De-La-Herran, A.; Garcia-Zapirain, B. Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef]
- Prisco, G.; Pirozzi, M.A. Validity of wearable inertial sensors for gait analysis: A systematic review. Diagnostics 2024, 15, 36. [Google Scholar] [CrossRef]
- Mayagoitia, R.E.; Nene, A.V. Accelerometer and rate gyroscope measurement of kinematics: An inexpensive alternative to optical motion analysis systems. J. Biomech. 2002, 35, 537–542. [Google Scholar] [CrossRef]
- Hanlon, M.; Anderson, R. Real-time gait event detection using wearable sensors. Gait Posture 2006, 24, 127–128. [Google Scholar] [CrossRef]
- Mansfield, A.; Lyons, G.M. The use of accelerometry to detect heel contact events for use as a sensor in FES assisted walking. Med. Eng. Phys. 2003, 25, 879–885. [Google Scholar] [CrossRef]
- Pappas, I.P.I.; Popovic, M.R. A reliable gait phase detection system. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Jasiewicz, J.M.; Allum, J.H.J. Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals. Gait Posture 2006, 24, 502–509. [Google Scholar] [CrossRef]
- Li, Q.; Young, M. Walking speed estimation using a shank-mounted inertial measurement unit. J. Biomech. 2010, 43, 1640–1643. [Google Scholar] [CrossRef]
- Lau, H.; Tong, K. The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot. Gait Posture 2008, 27, 248–257. [Google Scholar] [CrossRef]
- Zijlstra, W.; Hof, A.L. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 2003, 18, 1–10. [Google Scholar] [CrossRef]
- González, R.C.; López, A.M. Real-time gait event detection for normal subjects from lower trunk accelerations. Gait Posture 2010, 31, 322–325. [Google Scholar] [CrossRef]
- Digo, E.; Panero, E. Comparison of IMU set-ups for the estimation of gait spatio-temporal parameters in an elderly population. J. Eng. Med. 2023, 237, 61–73. [Google Scholar] [CrossRef]
- Cimolin, V.; Capodaglio, P. Computation of spatio-temporal parameters in level walking using a single inertial system in lean and obese adolescents. Biomed. Eng. Biomed. Tech. 2017, 62, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Panero, E.; Digo, E.; Agostini, V. Comparison of different motion capture setups for gait analysis: Validation of spatio-temporal parameters estimation. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018. [Google Scholar] [CrossRef]
- Bugané, F.; Benedetti, M.G. Estimation of spatial-temporal gait parameters in level walking based on a single accelerometer: Validation on normal subjects by standard gait analysis. Comput. Methods Programs Biomed. 2012, 108, 129–137. [Google Scholar] [CrossRef]
- Donisi, L.; Pagano, G. Benchmarking between two wearable inertial systems for gait analysis based on a different sensor placement using several statistical approaches. Measurement 2021, 173, 108642. [Google Scholar] [CrossRef]
- Coccia, A.; Lanzillo, B.; Donisi, L. Repeatability of spatio-temporal gait measurements in Parkinson’s disease. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1–3 June 2020. [Google Scholar]
- Mancini, M.; Horak, F.B. Potential of APDM mobility lab for the monitoring of the progression of Parkinson’s disease. Expert Rev. Med. Devices 2016, 13, 455–462. [Google Scholar] [CrossRef]
- Schmitz-Hübsch, T.; Brandt, A.U. Accuracy and repeatability of two methods of gait analysis–GaitRite™ und mobility lab™–in subjects with cerebellar ataxia. Gait Posture 2016, 48, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Schafer, R.W. What is a Savitzky-Golay filter? IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Zijlstra, W. Assessment of spatio-temporal parameters during unconstrained walking. Eur. J. Appl. Physiol. 2004, 92, 39–44. [Google Scholar] [CrossRef]
- Justusson, B.I. Median filtering: Statistical properties. In Two-Dimensional Digital Signal Prcessing II: Transforms and Median Filters; Springer: Berlin/Heidelberg, Germany, 2006; pp. 161–196. [Google Scholar] [CrossRef]
- Salarian, A. Gait assessment in Parkinson’s disease: Toward an ambulatory system for long-term monitoring. IEEE Trans. Biomed. Eng. 2004, 51, 1434–1443. [Google Scholar] [CrossRef]
- Blair, R.C.; Cole, S.R. Two-sided equivalence testing of the difference between two means. J. Mod. Appl. Stat. Methods 2002, 1, 18. [Google Scholar] [CrossRef]
- Passing, H.; Bablok, W. A new biometrical procedure for testing the equality of measurements from two different analytical methods. Clin. Chem. Lab. Med. 1983, 21, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Giavarina, D. Understanding bland altman analysis. Biochem. Medica 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.H.; Lai, Y.R.; Huang, C.C.; Lien, C.Y.; Chen, Y.S.; Yu, C.C.; Lu, C.H. Exploring the role of anticipatory postural adjustment duration within APA2 subphase as a potential mediator between clinical disease severity and fall risk in Parkinson’s disease. Front. Aging Neurosci. 2024, 16, 1354387. [Google Scholar] [CrossRef]
- Mizuta, N.; Hasui, N.; Higa, Y.; Matsunaga, A.; Ohnishi, S.; Sato, Y.; Morioka, S. Identifying impairments and compensatory strategies for temporal gait asymmetry in post-stroke persons. Sci. Rep. 2025, 15, 2704. [Google Scholar] [CrossRef]
- Park, J.; Han, K. Quantifying Gait Asymmetry in Stroke Patients: A Statistical Parametric Mapping (SPM) Approach. Medical Science Monitor. Int. Med. J. Exp. Clin. Res. 2025, 31, e946754. [Google Scholar]
- Kvist, A.; Tinmark, F.; Bezuidenhout, L.; Reimeringer, M.; Conradsson, D.M.; Franzén, E. Validation of algorithms for calculating spatiotemporal gait parameters during continuous turning using lumbar and foot mounted inertial measurement units. J. Biomech. 2024, 162, 111907. [Google Scholar] [CrossRef] [PubMed]
- Aqueveque, P.; Gómez, B.; Saavedra, F.; Canales, C.; Contreras, S.; Ortega-Bastidas, P.; Cano-de-la-Cuerda, R. Validation of a portable system for spatial-temporal gait parameters based on a single inertial measurement unit and a mobile application. Eur. J. Transl. Myol. 2020, 30, 9002. [Google Scholar] [CrossRef] [PubMed]
- Soulard, J.; Vaillant, J.; Balaguier, R.; Vuillerme, N. Spatio-temporal gait parameters obtained from foot-worn inertial sensors are reliable in healthy adults in single-and dual-task conditions. Sci. Rep. 2021, 11, 10229. [Google Scholar] [CrossRef]
- De Ridder, R.; Lebleu, J. Concurrent validity of a commercial wireless trunk triaxial accelerometer system for gait analysis. J. Sport Rehabil. 2019, 28, 6. [Google Scholar] [CrossRef]
Anthropometric Characteristics | Mean ± Standard Deviation |
---|---|
Age (years) | 35.50 ± 10.74 |
Height (cm) | 171.50 ± 8.75 |
Weight (kg) | 76.88 ± 17.88 |
Body Mass Index (kg/m2) | 26.04 ± 4.41 |
Spatiotemporal Parameters | Algorithm (Mean ± Std) | Mobility Lab (Mean ± Std) | p-Value |
---|---|---|---|
Cadence [steps/min] | 103.63 ± 7.44 | 103.23 ± 7.61 | <0.05 |
Gait cycle time [s] | 1.16 ± 0.09 | 1.18 ± 0.09 | 0.08 |
Stance phase [%] | 20.58 ± 2.32 | 19.65 ± 3.60 | 0.23 |
Swing phase [%] | 60.29 ± 1.16 | 60.16 ± 1.92 | 0.76 |
Double-support phase [%] | 39.85 ± 1.17 | 39.81 ± 1.91 | 0.87 |
Spatiotemporal Parameters | m | 95% CI_m | q | 95% CI_q |
---|---|---|---|---|
Cadence [steps/min] | 1.00 | 1.00 to 1.00 | 0.00 | 0.00 to 0.00 |
Gait cycle time [s] | 1.00 | 0.97 to 1.00 | 0.00 | 0.00 to 0.03 |
Stance phase [%] | 0.41 | 0.14 to 0.79 | 35.36 | 12.99 to 51.87 |
Swing phase [%] | 0.41 | 0.17 to 0.83 | 23.79 | 6.96 to 33.23 |
Double-support phase [%] | 0.48 | 0.20 to 0.86 | 10.76 | 4.38 to 16.47 |
Spatiotemporal Parameters | Bias | 95% CI_Bias | LOA |
---|---|---|---|
Cadence [steps/min] | 0.40 | 0.20 to 0.60 | −0.70 to 1.50 |
Gait cycle time [s] | −0.02 | −0.04 to 0.00 | −0.13 to 0.09 |
Stance phase [%] | 0.13 | −0.58 to 0.84 | −3.75 to 4.01 |
Swing phase [%] | 0.03 | −0.68 to 0.75 | −3.87 to 3.94 |
Double-support phase [%] | 0.91 | −0.38 to 2.20 | −6.15 to 7.97 |
Spatiotemporal Parameters | Level of Agreement | Type of Error |
---|---|---|
Cadence [steps/min] | Agreement | None |
Gait cycle time [s] | Agreement | None |
Stance phase [%] | No agreement | Proportional systematic error |
Swing phase [%] | No agreement | Proportional systematic error |
Double-support phase [%] | No agreement | Proportional systematic error |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prisco, G.; Cesarelli, G.; Romano, M.; Picillo, M.; Ricciardi, C.; Esposito, F.; Barone, P.; Cesarelli, M.; Donisi, L. Validity of a Novel Algorithm to Compute Spatiotemporal Parameters Based on a Single IMU Placed on the Lumbar Region. Sensors 2025, 25, 5822. https://doi.org/10.3390/s25185822
Prisco G, Cesarelli G, Romano M, Picillo M, Ricciardi C, Esposito F, Barone P, Cesarelli M, Donisi L. Validity of a Novel Algorithm to Compute Spatiotemporal Parameters Based on a Single IMU Placed on the Lumbar Region. Sensors. 2025; 25(18):5822. https://doi.org/10.3390/s25185822
Chicago/Turabian StylePrisco, Giuseppe, Giuseppe Cesarelli, Maria Romano, Marina Picillo, Carlo Ricciardi, Fabrizio Esposito, Paolo Barone, Mario Cesarelli, and Leandro Donisi. 2025. "Validity of a Novel Algorithm to Compute Spatiotemporal Parameters Based on a Single IMU Placed on the Lumbar Region" Sensors 25, no. 18: 5822. https://doi.org/10.3390/s25185822
APA StylePrisco, G., Cesarelli, G., Romano, M., Picillo, M., Ricciardi, C., Esposito, F., Barone, P., Cesarelli, M., & Donisi, L. (2025). Validity of a Novel Algorithm to Compute Spatiotemporal Parameters Based on a Single IMU Placed on the Lumbar Region. Sensors, 25(18), 5822. https://doi.org/10.3390/s25185822