Matrix Completion and Propagator Method-Based Fast 2D-DOA Estimation with Noise Suppression for Arbitrary EMVS Arrays
Abstract
1. Introduction
2. Problem Formulation
2.1. Preliminaries of EMVS
- Specifies the wave propagation direction;
- Quantifies the power flux density through its magnitude.
2.2. Signal Model
3. The Proposed Method
3.1. Noise Suppression
- 1.
- The intrinsic structural properties of covariance matrices;
- 2.
- The inter-element correlation patterns.
3.2. Matrix Completion Method
3.3. PM Algorithm
- 1.
- The columns of span the signal subspace;
- 2.
- possesses full rank.
3.4. Rough 2D-DOA Estimation
- 1.
- Define estimated subspaces .
- 2.
- Perform EVD on to obtain and .
- 3.
- Compute remaining polarization ratios:
3.5. Refined 2D-DOA Estimation
4. Algorithm Analysis
4.1. Relevant Comments
4.2. Flexibility Analysis
4.3. Identifiability
4.4. Computational Complexity Analysis
4.5. CRB
5. Simulation Results
5.1. Simulation Experiments
5.2. Experiment Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lan, X.; Jiang, L.; Ma, S.; Tian, Y.; Wang, Y.; Wang, E. Robust Tensor-Based DOA and Polarization Estimation in Conformal Polarization Sensitive Array with Bad Data. Sensors 2024, 24, 2485. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hu, J.; Zhang, Q.; Yuan, X. An Efficient 2D DOA Estimation Algorithm Based on OMP for Rectangular Array. Electronics 2023, 12, 1634. [Google Scholar] [CrossRef]
- Tong, X.; Chen, Y.; Deng, Z.; Hu, E. An Off-Grid DOA Estimation Method via Fast Variational Sparse Bayesian Learning. Electronics 2025, 14, 2781. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, Y.; So, H.C.; Li, J. A Novel Mixed-ADC Architecture for DOA Estimation. IEEE Signal Process. Lett. 2024, 31, 611–615. [Google Scholar] [CrossRef]
- Kong, D.; Lu, Y.; Zhou, S.; Wang, M.; Pang, G.; Wang, B.; Chen, L.; Huang, X.; Lyu, H.; Xu, K.; et al. Super-resolution tactile sensor arrays with sparse units enabled by deep learning. Sci. Adv. 2025, 11, eadv2124. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.; Huang, M.; Wan, L.; Wang, H.; Zhang, B. A Novel Unitary ESPRIT Algorithm for Monostatic FDA-MIMO Radar. Sensors 2020, 20, 827. [Google Scholar] [CrossRef]
- Bazzi, A.; Slock, D.T.M.; Meilhac, L. On spatio-frequential smoothing for joint angles and times of arrival estimation of multipaths. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 3311–3315. [Google Scholar] [CrossRef]
- Wang, H.; Yu, Z.; Wen, F. Computationally Efficient Direction Finding for Conformal MIMO Radar. Sensors 2024, 24, 6065. [Google Scholar] [CrossRef]
- Dou, R.; Ding, F.; Chen, X.; Wang, J.; Yu, D.; Tang, Y. Grid-less wideband direction of arrival estimation based on variational Bayesian inference. J. Acoust. Soc. Am. 2024, 155, 2087–2098. [Google Scholar] [CrossRef]
- Bazzi, A.; Slock, D.T.; Meilhac, L. Sparse recovery using an iterative variational Bayes algorithm and application to AoA estimation. In Proceedings of the 2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Limassol, Cyprus, 12–14 December 2016; pp. 197–202. [Google Scholar] [CrossRef]
- Ma, J.; Ma, H.; Liu, H.; Liu, W.; Cheng, X. A novel DOA estimation for low-elevation target method based on multiscattering center equivalent model. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3501605. [Google Scholar] [CrossRef]
- Roongmuanpha, N.; Satansup, J.; Pukkalanun, T.; Tangsrirat, W. Design of Mixed-Mode Analog PID Controller with CFOAs. Sensors 2024, 24, 3125. [Google Scholar] [CrossRef]
- Wang, L.; He, H.; Han, X.; He, Y.; Li, Z. Multi-dimensional parameter estimation of uniform circular array electromagnetic vector sensor based on polarization-direction of arrival matrix. J. Appl. Remote Sens. 2023, 17, 036503. [Google Scholar] [CrossRef]
- Liang, J.; Yue, W.; Kim, N.Y.; Wang, C.; Wang, L. Sensing Performance Enhancement Based on High-Frequency Polarization of Materials. Accounts Mater. Res. 2024, 5, 544–559. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, M.; Zhao, Y.; Hu, X.; Zhou, W.; Li, H. MCMARL: Parameterizing Value Function via Mixture of Categorical Distributions for Multi-Agent Reinforcement Learning. IEEE Trans. Games 2024, 16, 556–565. [Google Scholar] [CrossRef]
- Ahmed, T.; Xiaofei, Z.; Wang, Z.; Gong, P. Rectangular array of electromagnetic vector sensors: Tensor modelling/decomposition and DOA-polarisation estimation. IET Signal Process. 2019, 13, 689–699. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Stoica, P.; Nehorai, A. MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 720–741. [Google Scholar] [CrossRef]
- Jiang, G.; Yang, Y.; Yang, X. Low-Complexity DOA Estimation via Synthetic Coprime Polarization Sensitive Array with Reduced Mutual Coupling in Nonuniform Noise. Circuits Syst. Signal Process. 2023, 42, 6988–7003. [Google Scholar] [CrossRef]
- Li, R.; Dai, Z.; Li, Z.; Yang, J.; Tong, G. One-bit DOA estimation in non-uniform noise with alternating minimization method. Electron. Lett. 2024, 60, e13207. [Google Scholar] [CrossRef]
- Ding, Y.; Shi, J.; Yang, Z.; Zhang, Z.; Liu, Y.; Li, X. D2CN: Distributed Deep Convolutional Network. IEEE Trans. Signal Process. 2025, 73, 1309–1322. [Google Scholar] [CrossRef]
- Baidoo, E.; Hu, J.; Zeng, B.; Kwakye, B.D. Joint DOD and DOA estimation using tensor reconstruction based sparse representation approach for bistatic MIMO radar with unknown noise effect. Signal Process. 2021, 182, 107912. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, W.; Chen, H.; Jin, L.; Xu, G.; Liu, J. 2-D DOA Estimation Algorithm for Three-Parallel Co-prime Arrays via Spatial–Temporal Processing. Circuits Syst. Signal Process. 2024, 43, 3996–4009. [Google Scholar] [CrossRef]
- Ertug Zorkun, A.; Salas-Natera, M.A.; Martínez Rodríguez-Osorio, R.; Chatzinotas, S. Energy Efficient Low-Complexity RIS-Aided 3-D DoA Estimation and Target Tracking Algorithm via Matrix Completion. IEEE Access 2024, 12, 197929–197941. [Google Scholar] [CrossRef]
- Sun, F.; Wu, J.; Fan, H.; Chen, L.; Lan, P. Simple Direction-of-Arrival Estimation under Nonuniform Noise Scenarios. Wirel. Commun. Mob. Comput. 2022, 2022, 3892542. [Google Scholar] [CrossRef]
- Ruan, Y.; Li, S. A De-noising 2-D DOA Estimation Method for Random EMVS Arrays. Circuits Syst. Signal Process. 2025, 44, 6889–6912. [Google Scholar] [CrossRef]
- Wong, K.T.; Yuan, X. “Vector Cross-Product Direction-Finding” with an Electromagnetic Vector-Sensor of Six Orthogonally Oriented But Spatially Noncollocating Dipoles/Loops. IEEE Trans. Signal Process. 2011, 59, 160–171. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Z.; Zheng, Z.; Sun, J.; Cao, H.; Song, S.; Deng, Z.L.; Qin, F.; Cao, Y.; Li, X. Topological structures of energy flow: Poynting vector skyrmions. Phys. Rev. Lett. 2024, 133, 073802. [Google Scholar] [CrossRef]
- Nehorai, A.; Paldi, E. Vector-sensor array processing for electromagnetic source localization. IEEE Trans. Signal Process. 1994, 42, 376–398. [Google Scholar] [CrossRef]
- Zoltowski, M.D.; Wong, K.T. ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors. IEEE Trans. Signal Process. 2000, 48, 2195–2204. [Google Scholar] [CrossRef]
- Wong, K.T.; Zoltowski, M. Closed-form direction finding and polarization estimation with arbitrarily spaced electromagnetic vector-sensors at unknown locations. IEEE Trans. Antennas Propag. 2000, 48, 671–681. [Google Scholar] [CrossRef]
- Wen, F.; Zhang, X.; Zhang, Z. CRBs for direction-of-departure and direction-of-arrival estimation in collocated MIMO radar in the presence of unknown spatially coloured noise. IET Radar Sonar Navig. 2019, 13, 530–537. [Google Scholar] [CrossRef]
- Li, J.; Compton, R. Angle and polarization estimation using ESPRIT with a polarization sensitive array. IEEE Trans. Antennas Propag. 1991, 39, 1376–1383. [Google Scholar] [CrossRef]
Algorithm | Geometry | Flexibility | Identifiability | Complexity |
---|---|---|---|---|
ESPRIT | Sparse planar array | Low | ||
IESPRIT | Sparse planar array | Low | ||
ESPRIT-Like | Arbitrary | High | M | |
Proposed | Arbitrary | High |
Experiment | Scenario | Proposed Method Performance | Highlighted Property |
---|---|---|---|
Exp. 1 (Figure 5) | Computational complexity | Second (), Best () | Efficiency for large arrays |
Exp. 2 (Figure 6) | Average runtime | Second | Computational efficiency |
Exp. 3 (Figure 7) | RMSE vs. SNR | Best | Robustness |
Exp. 4 (Figure 8) | RMSE vs. L | Best | Robustness |
Exp. 5 (Figure 9) | RMSE vs M1 | second | Scalability and stability |
Exp. 6 (Figure 10) | RMSE vs. d1 | Best | Adaptability |
Exp. 7 (Figure 11) | RMSE vs. K | Best (K < 5), second (K > 5) | Resolution capability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, Y.; Gong, W. Matrix Completion and Propagator Method-Based Fast 2D-DOA Estimation with Noise Suppression for Arbitrary EMVS Arrays. Sensors 2025, 25, 5769. https://doi.org/10.3390/s25185769
Ruan Y, Gong W. Matrix Completion and Propagator Method-Based Fast 2D-DOA Estimation with Noise Suppression for Arbitrary EMVS Arrays. Sensors. 2025; 25(18):5769. https://doi.org/10.3390/s25185769
Chicago/Turabian StyleRuan, Yunzhe, and Weiwei Gong. 2025. "Matrix Completion and Propagator Method-Based Fast 2D-DOA Estimation with Noise Suppression for Arbitrary EMVS Arrays" Sensors 25, no. 18: 5769. https://doi.org/10.3390/s25185769
APA StyleRuan, Y., & Gong, W. (2025). Matrix Completion and Propagator Method-Based Fast 2D-DOA Estimation with Noise Suppression for Arbitrary EMVS Arrays. Sensors, 25(18), 5769. https://doi.org/10.3390/s25185769