Sympathetic Burden Measured Through a Chest-Worn Sensor Correlates with Spatiotemporal Gait Performances and Global Cognition in Parkinson’s Disease
Abstract
Highlights
- Time-domain heart rate variability parameters are significantly correlated with spatiotemporal gait features in Parkinson’s disease.
- The Stress Index, a measure of sympathetic activity, is associated with poorer gait performance and reduced cognitive function.
- Measures derived by heart rate variability may serve as non-invasive biomarkers for the evaluation of functional mobility and cognition in Parkinson’s disease.
- Heart rate variability and autonomic functions should be targets for future clinical trials evaluating motor performances.
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection and Clinical Evaluation
2.2. Sensor-Based Measurement—Heart Rate Variability
2.3. Sensor-Based Measurement—Spatiotemporal Gait Measures
2.4. Statistical Analysis for Descriptive Statistics and Correlation
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FDR | False Discovery Rate |
FOG-Q | Freezing Of Gait Questionnaire |
HF | High frequency |
HR | Heart Rate |
HRV | Heart Rate Variability |
LEDD | Levodopa Equivalent Daily Dosages |
LF | Low frequency |
MoCA | Montreal Cognitive Assessment |
MSA | Multisystem atrophy |
PD | Parkinson’s Disease |
RMSSD | Root Mean Square of Successive Differences |
RR | R-R interval |
SDNN | Standard deviation of NN intervals |
TUG | Timed up and go test |
UPDRS | Unified Parkinson’s Disease Rating Scale |
References
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shlomo, Y.; Darweesh, S.; Llibre-Guerra, J.; Marras, C.; San Luciano, M.; Tanner, C. The epidemiology of Parkinson’s disease. Lancet 2024, 403, 283–292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dorsey, E.R.; Sherer, T.; Okun, M.S.; Bloem, B.R. The Emerging Evidence of the Parkinson Pandemic. J. Park. Dis. 2018, 8 (Suppl. S1), S3–S8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mirelman, A.; Bonato, P.; Camicioli, R.; Ellis, T.D.; Giladi, N.; Hamilton, J.L.; Hass, C.J.; Hausdorff, J.M.; Pelosin, E.; Almeida, Q.J. Gait impairments in Parkinson’s disease. Lancet Neurol. 2019, 18, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Imbalzano, G.; Ledda, C.; Tangari, M.M.; Artusi, C.A.; Montanaro, E.; Rizzone, M.G.; Zibetti, M.; Lopiano, L.; Romagnolo, A. Unraveling the stride: Exploring the influence of neurogenic orthostatic hypotension on gait and balance in Parkinson’s disease. Clin. Auton. Res. 2024, 34, 593–601. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Z.; Li, G.; Liu, J. Autonomic dysfunction in Parkinson’s disease: Implications for pathophysiology, diagnosis, and treatment. Neurobiol. Dis. 2020, 134, 104700. [Google Scholar] [CrossRef] [PubMed]
- Carli, G.; Kanel, P.; Roytman, S.; Pongmala, C.; Albin, R.L.; Raffel, D.M.; Scott, P.J.H.; Bohnen, N.I. Noradrenergic cardiac denervation is associated with gait velocity in Parkinson disease: A dual ligand PET study. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 3978–3989, Erratum in Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 1596–1599. https://doi.org/10.1007/s00259-024-06839-y. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heimler, B.; Koren, O.; Inzelberg, R.; Rosenblum, U.; Hassin-Baer, S.; Zeilig, G.; Bartsch, R.P.; Plotnik, M. Heart-rate variability as a new marker for freezing predisposition in Parkinson’s disease. Park. Relat. Disord. 2023, 113, 105476. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aerts, M.B.; Synhaeve, N.E.; Mirelman, A.; Bloem, B.R.; Giladi, N.; Hausdorff, J.M. Is heart rate variability related to gait impairment in patients with Parkinson’s disease? A pilot study. Park. Relat. Disord. 2009, 15, 712–715. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brisinda, D.; Picerni, M.; Fenici, P.; Fenici, R. Synthetic assessment of cardiac autonomic modulation and Baevsky stress index in patients with synucleinopathies. Eur. Heart J. 2024, 45 (Suppl. S1), ehae666.3017. [Google Scholar] [CrossRef]
- van Duijvenboden, S.; Ramírez, J.; Scheurink, J.; Darweesh, S.K.L.; Orini, M.; Tinker, A.; Munroe, P.B.; Thannhauser, J.; Evers, L.; IntHout, J.; et al. Heart Rate Profiles During Exercise and Incident Parkinson’s Disease. Ann. Neurol. 2025; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Baevsky, R.M.; Berseneva, A.P. Methodical Recommendations Use KARDIVAR System for Determination of the Stress Level and Estimation of the Body Adaptability Standards of Measurements and Physiological Interpretation. Moscow–Prague. 2008. Available online: https://www.academia.edu/35296847/ (accessed on 1 July 2025).
- Tchelet, K.; Stark-Inbar, A.; Yekutieli, Z. Pilot Study of the EncephaLog Smartphone Application for Gait Analysis. Sensors 2019, 19, 5179. [Google Scholar] [CrossRef] [PubMed]
- Yahalom, G.; Yekutieli, Z.; Israeli-Korn, S.; Elincx-Benizri, S.; Livneh, V.; Fay-Karmon, T.; Tchelet, K.; Rubel, Y.; Hassin-Baer, S. Smartphone Based Timed Up and Go Test Can Identify Postural Instability in Parkinson’s Disease. Isr. Med. Assoc. J. 2020, 22, 37–42. [Google Scholar] [PubMed]
- Motolese, F.; Magliozzi, A.; Puttini, F.; Rossi, M.; Capone, F.; Karlinski, K.; Stark-Inbar, A.; Yekutieli, Z.; Di Lazzaro, V.; Marano, M. Parkinson’s Disease Remote Patient Monitoring During the COVID-19 Lockdown. Front. Neurol. 2020, 11, 567413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marano, M.; Motolese, F.; Rossi, M.; Magliozzi, A.; Yekutieli, Z.; Di Lazzaro, V. Remote smartphone gait monitoring and fall prediction in Parkinson’s disease during the COVID-19 lockdown. Neurol. Sci. 2021, 42, 3089–3092. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marano, M.; Sergi, G.; Magliozzi, A.; Bressi, F.; Bravi, M.; Laudisio, A.; Pedone, C.; Karlinski, K.; Yekutieli, Z.; Di Lazzaro, V. Fear of falling impairs spatiotemporal gait parameters, mobility, and quality of life in Parkinson’s disease: A cross-sectional study. Neurol. Sci. 2025, 46, 2655–2663. [Google Scholar] [CrossRef] [PubMed]
- Maidan, I.; Plotnik, M.; Mirelman, A.; Weiss, A.; Giladi, N.; Hausdorff, J.M. Heart rate changes during freezing of gait in patients with Parkinson’s disease. Mov. Disord. 2010, 25, 2346–2354. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huizinga, J.D.; Chen, J.H.; Hussain, A.; Zheng, D.; Liu, L.; Lui, H.; Pan, M.; Chen, X.; DiBattista, B.; Alam, M.; et al. Determining autonomic sympathetic tone and reactivity using Baevsky’s stress index. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2025, 328, R562–R577. [Google Scholar] [CrossRef] [PubMed]
- Joo, B.E.; You, J.; Kim, R.O.; Kwon, K.Y. Association between cognitive and autonomic dysfunctions in patients with de novo Parkinson’s disease. Sci. Rep. 2025, 15, 13535. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ricciardi, L.; Bloem, B.R.; Snijders, A.H.; Daniele, A.; Quaranta, D.; Bentivoglio, A.R.; Fasano, A. Freezing of gait in Parkinson’s disease: The paradoxical interplay between gait and cognition. Park. Relat. Disord. 2014, 20, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Lovallo, W.R. Do low levels of stress reactivity signal poor states of health? Biol. Psychol. 2011, 86, 121–128. [Google Scholar] [CrossRef]
- Yerkes, R.M.; Dodson, J.D. The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 1908, 18, 459–482. [Google Scholar] [CrossRef]
- Poewe, W. Dysautonomia and cognitive dysfunction in Parkinson’s disease. Mov. Disord. 2007, 22 (Suppl. S17), S374–S378. [Google Scholar] [CrossRef]
- van Stegeren, A.H.; Everaerd, W.; Cahill, L.; McGaugh, J.L.; Gooren, L.J.G. Memory for emotional events: Differential effects of centrally versus peripherally acting β-blocking agents. Psychopharmacology 1998, 138, 305–310. [Google Scholar] [CrossRef]
- Rozanski, A.; Kubzansky, L.D. Psychologic functioning and physical health: A paradigm of flexibility. Psychosom. Med. 2005, 67, S47–S53. [Google Scholar] [CrossRef]
- McEwen, B.S. Stress, adaptation, and disease: Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1998, 840, 33–44. [Google Scholar] [CrossRef]
- Solla, P.; Cadeddu, C.; Cannas, A.; Deidda, M.; Mura, N.; Mercuro, G.; Marrosu, F. Heart rate variability shows different cardiovascular modulation in Parkinson’s disease patients with tremor dominant subtype compared to those with akinetic rigid dominant subtype. J. Neural Transm. 2015, 122, 1441–1446. [Google Scholar] [CrossRef] [PubMed]
- Devos, D.; Kroumova, M.; Bordet, R.; Vodougnon, H.; Guieu, J.D.; Libersa, C.; Destee, A. Heart rate variability and Parkinson’s disease severity. J. Neural Transm. 2003, 110, 997–1011. [Google Scholar] [CrossRef] [PubMed]
- Kanegusuku, H.; Silva-Batista, C.; Peçanha, T.; Nieuwboer, A.; Silva, N.D., Jr.; Costa, L.A.; de Mello, M.T.; Piemonte, M.E.; Ugrinowitsch, C.; Forjaz, C.L. Effects of Progressive Resistance Training on Cardiovascular Autonomic Regulation in Patients with Parkinson Disease: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2017, 98, 2134–2141. [Google Scholar] [CrossRef] [PubMed]
- Marano, M.; Anzini, G.; Musumeci, G.; Magliozzi, A.; Pozzilli, V.; Capone, F.; Di Lazzaro, V. Transcutaneous Auricular Vagus Stimulation Improves Gait and Reaction Time in Parkinson’s Disease. Mov. Disord. 2022, 37, 2163–2164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Griffith, G.J.; Mehta, N.; Lamotte, G.; McKee, K.E.; Suttman, E.; Haus, J.M.; Joslin, E.; Balfany, K.; Kohrt, W.M.; Christiansen, C.L.; et al. Effects of 6 months of endurance exercise on motor function, exercise capacity, and autonomic function based on presence of autonomic dysfunction in individuals with early Parkinson’s disease. J. Park. Dis. 2025, 15, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, A.; Asahina, M.; Araki, N.; Poudel, A.; Fujinuma, Y.; Yamanaka, Y.; Kuwabara, S. Myocardial (123)I-MIBG Uptake and Cardiovascular Autonomic Function in Parkinson’s Disease. Park. Dis. 2015, 2015, 805351. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meksi, K.; Garasto, E.; Bovenzi, R.; Mercuri, N.B.; Stefani, A.; Rocchi, C. Gender-specific cardiovascular autonomic responses in Parkinson’s disease: Insights from an observational study. Park. Relat. Disord. 2025, 137, 107902. [Google Scholar] [CrossRef] [PubMed]
- Cerri, S.; Mus, L.; Blandini, F. Parkinson’s Disease in Women and Men: What’s the Difference? J. Park. Dis. 2019, 9, 501–515. [Google Scholar] [CrossRef] [PubMed]
- Marano, M.; Altavista, M.C.; Cassetta, E.; Brusa, L.; Viselli, F.; Denaro, A.; Ventriglia, M.; Peppe, A. The influence of sex on non-motor wearing-off in Parkinson’s disease: A WORK-PD post-hoc study. Neurosci. Lett. 2024, 836, 137850. [Google Scholar] [CrossRef] [PubMed]
- Espinoza-Valdés, Y.; Córdova-Arellano, R.; Espinoza-Espinoza, M.; Méndez-Alfaro, D.; Bustamante-Aguirre, J.P.; Maureira-Pareja, H.A.; Zamunér, A.R. Association between Cardiac Autonomic Control and Postural Control in Patients with Parkinson’s Disease. Int. J. Environ. Res. Public Health 2020, 18, 249. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Siche-Pantel, F.; Mühlenberg, M.; Buschfort, R.; Michels, H.; Jakobsmeyer, R.; Oesterschlink, J.; Reinsberger, C. Sex-differences in autonomic and cardiovascular responses to multimodal therapy in Parkinson’s disease: A pilot study. BMC Neurol. 2025, 25, 253. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berkebile, J.A.; Inan, O.T.; Beach, P.A. Wearable multimodal sensing for quantifying the cardiovascular autonomic effects of levodopa in parkinsonism. Front. Netw. Physiol. 2025, 5, 1543838. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Conti, M.; Garasto, E.; Bovenzi, R.; Ferrari, V.; Mercuri, N.B.; Di Giuliano, F.; Cerroni, R.; Pierantozzi, M.; Schirinzi, T.; Stefani, A.; et al. Insular and limbic abnormal functional connectivity in early-stage Parkinson’s disease patients with autonomic dysfunction. Cereb. Cortex 2024, 34, bhae270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Variable | Mean/n (%) | sd | p-Value | |||
---|---|---|---|---|---|---|
Demographic and disease specific | Sex (M) | 21 (75%) | ||||
Age | 68.357 | 9.121 | - | |||
Disease duration | 6.954 | 5.924 | - | |||
Hoehn & Yahr | 2.000 | 0.451 | - | |||
MoCA | 23.643 | 2.147 | - | |||
UPDRS III | 18.964 | 6.818 | - | |||
LEDD | 757.750 | 352.559 | - | |||
FOG-Q | 4.893 | 4.131 | - | |||
Heart rate variability | HRV max | 85.314 | 16.772 | - | ||
HRV min | 68.354 | 12.202 | - | |||
HRV delta | 16.961 | 16.965 | - | |||
HRV mean | 75.898 | 11.780 | - | |||
SDNN | 39.796 | 41.339 | - | |||
RMSSD | 31.942 | 50.036 | - | |||
Stress Index | 522.041 | 575.010 | - | |||
Mean HR | 75.564 | 11.833 | - | |||
Mean RR | 821.033 | 127.584 | - | |||
Normal | Fast | |||||
TUG parameters | Stand Up Time (s) | 1.113 | 0.366 | 1.077 | 0.366 | 0.029 |
Walk Away Time (s) | 4.159 | 1.464 | 3.946 | 1.467 | 0.001 | |
Rotation Time (s) | 1.115 | 0.450 | 1.093 | 0.452 | 0.028 | |
Walk Back Time (s) | 4.264 | 1.485 | 4.094 | 1.455 | 0.001 | |
Sit Down Time (s) | 2.126 | 0.501 | 2.094 | 0.570 | 0.226 | |
Total Time (s) | 12.776 | 4.071 | 12.303 | 4.085 | 0.001 | |
Rotation steps (n) | 3.586 | 0.663 | 3.583 | 0.728 | 0.940 | |
Step correlation (R2) | 0.536 | 0.178 | 0.556 | 0.187 | 0.011 | |
Step frequency | 1.697 | 0.095 | 1.690 | 0.111 | 0.115 | |
Sway (m) | 0.012 | 0.003 | 0.012 | 0.003 | 0.881 | |
Step number | 15.767 | 4.143 | 15.290 | 4.136 | 0.001 | |
Step length (m) | 0.203 | 0.045 | 0.210 | 0.049 | 0.001 |
Variable | Age | Dis. Duration | Hoehn & Yahr | MoCA | UPDRS III | LEDD | FOG-Q | Stand Up Time | Walk Away Time | Rotation Time | Walk Back Time | Sit Down Time | Total Time | Rotation Steps | Step Correlation | Step Frequency | Sway | Step Number | Step Length |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | 1.00 ** | 0.24 | −0.03 | −0.30 | 0.30 | −0.00 | −0.17 | 0.21 | 0.28 | 0.22 | 0.30 | 0.27 | 0.29 | 0.24 | −0.21 | 0.25 | −0.38 | 0.35 | −0.43 |
Disease duration | 0.24 | 1.00 ** | 0.33 | −0.10 | 0.35 | 0.40 | 0.08 | 0.25 | 0.29 | 0.31 | 0.31 | 0.22 | 0.30 | 0.38 | −0.17 | −0.26 | −0.42 | 0.31 | −0.28 |
Hoehn & Yahr | −0.03 | 0.33 | 1.00 ** | −0.21 | 0.51 * | 0.13 | 0.29 | 0.30 | 0.33 | 0.32 | 0.34 | 0.19 | 0.33 | 0.42 | −0.39 | −0.40 | −0.22 | 0.45 * | −0.44 * |
MoCA | −0.30 | −0.10 | −0.21 | 1.00 ** | −0.33 | −0.16 | −0.19 | −0.53 ** | −0.57 ** | −0.39 | −0.63 ** | −0.49 * | −0.59 ** | −0.22 | 0.51 * | −0.02 | 0.28 | −0.60 ** | 0.54 ** |
UPDRS III | 0.30 | 0.35 | 0.51 * | −0.33 | 1.00 ** | 0.12 | 0.35 | 0.61 ** | 0.70 ** | 0.55 ** | 0.69 ** | 0.54 ** | 0.68 ** | 0.42 | −0.46 * | −0.32 | −0.37 | 0.66 ** | −0.69 ** |
LEDD | −0.00 | 0.40 | 0.13 | −0.16 | 0.12 | 1.00 ** | 0.35 | 0.25 | 0.24 | 0.34 | 0.24 | 0.21 | 0.26 | 0.29 | −0.27 | −0.33 | −0.22 | 0.15 | −0.12 |
FOG-Q | −0.17 | 0.08 | 0.29 | −0.19 | 0.35 | 0.35 | 1.00 ** | 0.45 * | 0.43 * | 0.57 ** | 0.41 | 0.35 | 0.45 * | 0.44 * | −0.54 ** | −0.52 * | 0.06 | 0.36 | −0.26 |
Stand Up Time | 0.21 | 0.25 | 0.30 | −0.53 ** | 0.61 ** | 0.25 | 0.45 * | 1.00** | 0.93 ** | 0.86 ** | 0.92 ** | 0.74 ** | 0.95 ** | 0.61 ** | −0.67 ** | −0.34 | −0.24 | 0.84 ** | −0.77 ** |
Walk Away Time | 0.28 | 0.29 | 0.33 | −0.57 ** | 0.70 ** | 0.24 | 0.43 * | 0.93** | 1.00 ** | 0.88 ** | 0.99 ** | 0.75 ** | 0.99 ** | 0.66 ** | −0.71 ** | −0.34 | −0.33 | 0.93 ** | −0.90 ** |
Rotation Time | 0.22 | 0.31 | 0.32 | −0.39 | 0.55 ** | 0.34 | 0.57 ** | 0.86** | 0.88 ** | 1.00 ** | 0.82 ** | 0.77 ** | 0.90 ** | 0.85 ** | −0.67 ** | −0.38 | −0.27 | 0.76 ** | −0.72 ** |
Walk Back Time | 0.30 | 0.31 | 0.34 | −0.63 ** | 0.69 ** | 0.24 | 0.41 | 0.92** | 0.99 ** | 0.82 ** | 1.00 ** | 0.73 ** | 0.98 ** | 0.62 ** | −0.74 ** | −0.35 | −0.35 | 0.95 ** | −0.91 ** |
Sit Down Time | 0.27 | 0.22 | 0.19 | −0.49 * | 0.54 ** | 0.21 | 0.35 | 0.74** | 0.75 ** | 0.77 ** | 0.73 ** | 1.00 ** | 0.81 ** | 0.58 ** | −0.68 ** | −0.18 | −0.32 | 0.59 ** | −0.57 ** |
Total Time | 0.29 | 0.30 | 0.33 | −0.59 ** | 0.68 ** | 0.26 | 0.45 * | 0.95** | 0.99 ** | 0.90 ** | 0.98 ** | 0.81 ** | 1.00 ** | 0.68 ** | −0.74 ** | −0.34 | −0.34 | 0.91 ** | −0.87 ** |
Rotation steps | 0.24 | 0.38 | 0.42 | −0.22 | 0.42 | 0.29 | 0.44 * | 0.61** | 0.66 ** | 0.85** | 0.62** | 0.58 ** | 0.68 ** | 1.00 ** | −0.51 * | −0.27 | −0.33 | 0.65 ** | −0.64 ** |
Step correlation | −0.21 | −0.17 | −0.39 | 0.51 * | −0.46 * | −0.27 | −0.54 ** | −0.67 ** | −0.71** | −0.67 ** | −0.74 ** | −0.68 ** | −0.74 ** | −0.51 * | 1.00 ** | 0.41 | 0.20 | −0.66 ** | 0.62 ** |
Step frequency | 0.25 | −0.26 | −0.40 | −0.02 | −0.32 | −0.33 | −0.52 * | −0.34 | −0.34 | −0.38 | −0.35 | −0.18 | −0.34 | −0.27 | 0.41 | 1.00 ** | 0.08 | −0.35 | 0.28 |
Sway | −0.38 | −0.42 | −0.22 | 0.28 | −0.37 | −0.22 | 0.06 | −0.24 | −0.33 | −0.27 | −0.35 | −0.32 | −0.34 | −0.33 | 0.20 | 0.08 | 1.00 ** | −0.40 | 0.45 * |
Step number | 0.35 | 0.31 | 0.45 * | −0.60 ** | 0.66 ** | 0.15 | 0.36 | 0.84 ** | 0.93** | 0.76 ** | 0.95 ** | 0.59 ** | 0.91 ** | 0.65 ** | −0.66 ** | −0.35 | −0.40 | 1.00 ** | −0.97 ** |
Step length | −0.43 | −0.28 | −0.44 * | 0.54 ** | −0.69 ** | −0.12 | −0.26 | −0.77 ** | −0.90 ** | −0.72 ** | −0.91 ** | −0.57 ** | −0.87 ** | −0.64 ** | 0.62 ** | 0.28 | 0.45 * | −0.97 ** | 1.00 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sergi, G.; Yekutieli, Z.; Meloni, M.; Bianchini, E.; Vivacqua, G.; Di Lazzaro, V.; Marano, M. Sympathetic Burden Measured Through a Chest-Worn Sensor Correlates with Spatiotemporal Gait Performances and Global Cognition in Parkinson’s Disease. Sensors 2025, 25, 5756. https://doi.org/10.3390/s25185756
Sergi G, Yekutieli Z, Meloni M, Bianchini E, Vivacqua G, Di Lazzaro V, Marano M. Sympathetic Burden Measured Through a Chest-Worn Sensor Correlates with Spatiotemporal Gait Performances and Global Cognition in Parkinson’s Disease. Sensors. 2025; 25(18):5756. https://doi.org/10.3390/s25185756
Chicago/Turabian StyleSergi, Gabriele, Ziv Yekutieli, Mario Meloni, Edoardo Bianchini, Giorgio Vivacqua, Vincenzo Di Lazzaro, and Massimo Marano. 2025. "Sympathetic Burden Measured Through a Chest-Worn Sensor Correlates with Spatiotemporal Gait Performances and Global Cognition in Parkinson’s Disease" Sensors 25, no. 18: 5756. https://doi.org/10.3390/s25185756
APA StyleSergi, G., Yekutieli, Z., Meloni, M., Bianchini, E., Vivacqua, G., Di Lazzaro, V., & Marano, M. (2025). Sympathetic Burden Measured Through a Chest-Worn Sensor Correlates with Spatiotemporal Gait Performances and Global Cognition in Parkinson’s Disease. Sensors, 25(18), 5756. https://doi.org/10.3390/s25185756