Automated Detection of Methane Leaks by Combining Infrared Imaging and a Gas-Faster Region-Based Convolutional Neural Network Technique
Abstract
1. Introduction
2. Methodology
2.1. Faster R-CNN
2.2. Gas R-CNN Detection Model
2.2.1. Multiscale Network for Gas Feature Extraction
- (1)
- ResNet50 combination of ECA mechanism
- (2)
- Multiscale feature fusion based on FPN
2.2.2. Gas Detection Networks with RoI Align
3. Experimental Investigation
3.1. Uncooled Infrared Imaging Gas Leak Detection System
3.2. Experimental Setup
3.3. Typical Infrared Image of a CH4 Gas Leak
4. Detection of Gas Leaks Using Infrared Images and Gas R-CNN
4.1. Gas Dataset
4.1.1. Data Augmentation
4.1.2. Data Labeling
4.1.3. Dataset Partition
4.2. Implementation Details
4.2.1. Leak Detection
4.2.2. Model Training
4.2.3. Evaluation Indicators
4.3. Results and Analysis
4.3.1. Performance Evaluation of Gas R-CNN Model
4.3.2. Comparison with Prevalent Models
4.3.3. Generalization Ability of the Gas R-CNN Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GasR-CNN | Gas-Faster Region-based Convolutional Neural Network |
ECA | Efficient Channel Attention |
OGI | Optical Gas Imaging |
HOS | High-Order Statistics |
SVM | Support Vector Machine |
CNN | Convolutional Neural Network |
Faster R-CNN | Faster Region-based Convolutional Neural Network |
R-CNN | Region-based Convolutional Neural Network |
RoI | Region Of Interest |
FPN | Feature Pyramid Network |
FC | Fully Connected |
VOCs | Volatile Organic Compounds |
SGD | Stochastic Gradient Descent |
AP | Average Precision |
PR | Precision–Recall |
References
- Dlugokencky, E. Global CH4 Monthly Means; Earth System Research Laboratories: Boulder, CO, USA, 2021. [Google Scholar]
- O’Connor, F.M.; Abraham, N.L.; Dalvi, M.; Folberth, G.A.; Griffiths, P.T.; Hardacre, C. Assessment of pre-industrial to present-day anthropogenic climate forcing in UKESM1. Atmos. Chem. Phys. 2021, 21, 1211–1243. [Google Scholar] [CrossRef]
- Krasner, A.; Jones, T.S.; La Rocque, R. Cooking with gas can harm children: Cooking with gas stoves is associated with increased risk of childhood respiratory illnesses including asthma. J. Environ. Health. 2019, 83, 14–18. [Google Scholar]
- Meribout, M.; Khezzar, L.; Azzi, A.; Ghendour, N. Leak detection systems in oil and gas fields: Present trends and future prospects. Flow. Meas. Instrum. 2020, 75, 101772. [Google Scholar] [CrossRef]
- Lu, W.; Liang, W.; Zhang, L.; Liu, W. A novel noise reduction method applied in negative pressure wave for pipeline leakage localization. Process Saf. Environ. Prot. 2016, 104, 142–149. [Google Scholar] [CrossRef]
- Liu, C.W.; Li, Y.X.; Yan, Y.K.; Fu, J.T.; Zhang, Y.Q. A new leak location method based on leakage acoustic waves for oil and gas pipelines. J. Loss Prev. Process Ind. 2015, 35, 236–246. [Google Scholar] [CrossRef]
- Lu, H.; Iseley, T.; Behbahani, S.; Fu, L. Leakage detection techniques for oil and gas pipelines: State-of-the-art. Tunn. Undergr. Space Technol. 2020, 98, 103249. [Google Scholar] [CrossRef]
- Doshmanziari, R.; Khaloozadeh, H.; Nikoofard, A. Gas pipeline leakage detection based on sensor fusion under model-based fault detection framework. J. Pet. Sci. Eng. 2020, 184, 106581. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Zhang, C.; Long, Y.; Zhang, B. Gas cloud infrared image enhancement based on anisotropic diffusion. In Proceedings of the Advanced Environmental, Chemical, and Biological Sensing Technologies VIII, Orlando, FL, USA, 26 May 2011; pp. 197–204. [Google Scholar]
- Lu, Q.; Li, Q.; Hu, L.; Huang, L. An effective low-contrast SF6 gas leakage detection method for infrared imaging. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Zhengzheng, T.; Bin, L.; Yongjian, S.; Qing, F.; Jianlin, L. A new method for SF6 gas leakage detection. In Proceedings of the International Conference on Computer Science & Education, Hefei, China, 24–27 August 2010; pp. 31–34. [Google Scholar]
- Yuan, P.; Wang, M. Thermal imaging detection method of leak gas clouds based on support vector machine. Acta Opt. Sinica. 2022, 42, 104–111. [Google Scholar]
- Wang, J.; Ji, J.; Ravikumar, A.P.; Savarese, S.; Brandt, A.R. VideoGasNet: Deep learning for natural gas methane leak classification using an infrared camera. Energy 2022, 238, 121516. [Google Scholar] [CrossRef]
- Shi, J.; Chang, Y.; Xu, C.; Khan, F.; Chen, G.; Li, C. Real-time leak detection using an infrared camera and faster R-CNN technique. Comput. Chem. Eng. 2020, 135, 106780. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, F.; Su, L.; Yang, B.; Hu, Z.; Hong, W. VOC gas leakage detection using infrared image and convolutional neural networks. In Proceedings of the AOPC 2022: Infrared Devices and Infrared Technology; and Terahertz Technology and Applications, Beijing, China, 18–20 December 2022. [Google Scholar]
- Zhou, J.; Liu, Y.; Zhang, Y.; Hu, H.; Leng, Z.; Sun, F.; Chen, C. High-accuracy combustible gas cloud imaging system using YOLO-plume classification network. Front. Phys. 2025, 13, 1603047. [Google Scholar] [CrossRef]
- Ravikumar, A.P.; Wang, J.; McGuire, M.; Bell, C.S.; Zimmerle, D.; Brandt, A.R. Good versus good enough? empirical tests of methane leak detection sensitivity of a commercial infrared camera. Environ. Sci. Technol. 2018, 52, 2368–2374. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Guo, W.; Zhang, Y. Detection of copy-move forgery in digital images using SIFT algorithm. In Proceedings of the IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, China, 19–20 December 2008; pp. 272–276. [Google Scholar]
- Xiang, Z.; Tan, H.; Ye, W. The excellent properties of a dense grid-based HOG feature on face recognition compared to gabor and LBP. IEEE Access. 2018, 6, 29306–29319. [Google Scholar] [CrossRef]
- Zeng, D.; Veldhuis, R.; Spreeuwers, L. A survey of face recognition techniques under occlusion. IET Biometrics. 2021, 10, 581–606. [Google Scholar] [CrossRef]
- Janai, J.; Güney, F.; Behl, A.; Geiger, A. Computer vision for autonomous vehicles: Problems, datasets and state of the art. Found. Trendsö Comput. Graph. Vis. 2021, 12, 1–308. [Google Scholar]
- Yu, R.; Liu, Z.; Li, X.; Lu, W.; Ma, D.; Yu, M.; Wang, J.; Li, B. Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space. Appl. Energy 2019, 238, 249–257. [Google Scholar] [CrossRef]
- Lago, J.; De Ridder, F.; De Schutter, B. Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. Appl. Energy 2018, 221, 386–405. [Google Scholar] [CrossRef]
- Song, Y.; Li, S. Gas leak detection in galvanised steel pipe with internal flow noise using convolutional neural network. Process Saf. Environ. 2020, 146, 736–744. [Google Scholar] [CrossRef]
- Ning, F.; Cheng, Z.; Meng, D.; Duan, S.; Wei, J. Enhanced spectrum convolutional neural architecture: An intelligent leak detection method for gas pipeline. Process Saf. Environ. Prot. 2021, 146, 726–735. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 142–158. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. arXiv 2015, arXiv:1504.08083. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Poudel, R.P.; Bonde, U.; Liwicki, S.; Zach, C. Contextnet: Exploring context and detail for semantic segmentation in real-time. arXiv 2018, arXiv:1805.04554. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Li, X.; Wang, W.; Hu, X.; Yang, J. Selective kernel networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 510–519. [Google Scholar]
- Zhang, H.; Wu, C.; Zhang, Z.; Zhu, Y.; Lin, H.; Zhang, Z.; Sun, Y.; He, T.; Mueller, J.; Manmatha, R.; et al. ResNeSt: Split-attention networks. arXiv 2004, arXiv:08955. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11531–11539. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Xiang, X.; Zhang, Y.; Saddik, A.E. Pavement crack detection network based on pyramid structure and attention mechanism. IET Image Process. 2020, 14, 1580–1586. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. arXiv 2017, arXiv:1703.06870. [Google Scholar]
- Shanmugam, D.; Blalock, D.; Balakrishnan, G.; Guttag, J. Better aggregation in test-time augmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 1194–1203. [Google Scholar]
- Zuo, J.; Hu, X.; Xu, L.; Xu, W.; Han, Y.; Li, Z. CH4 gas leakage detection method for low contrast infrared images. Infrared Phys. Technol. 2022, 127, 104473. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, J.; Ren, X. Dim target detection method based on deep learning in complex trafc environment. J. Grid Comput. 2022, 20, 8. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. arXiv 2016, arXiv:1512.02325. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
Models | AP | mAP | F1 | mF1 | ||||
---|---|---|---|---|---|---|---|---|
30 mL/min | 100 mL/min | 300 mL/min | 30 mL/min | 100 mL/min | 300 mL/min | |||
Faster RCNN (VGG16) | 0.7259 | 0.8144 | 0.7769 | 0.7724 | 0.5511 | 0.6041 | 0.5576 | 0.3259 |
Faster RCNN (Resnet50) | 0.7249 | 0.7628 | 0.8344 | 0.7740 | 0.6375 | 0.6905 | 0.6241 | 0.4234 |
Faster RCNN (Resnet50+FPN+RoIAlig) | 0.9424 | 0.9548 | 0.9594 | 0.9522 | 0.9131 | 0.8930 | 0.9172 | 0.8241 |
Proposed | 0.9599 | 0.9647 | 0.9833 | 0.9693 | 0.9358 | 0.9125 | 0.9755 | 0.8860 |
Models | AP | mAP | ||
---|---|---|---|---|
30 mL/min | 100 mL/min | 300 mL/min | ||
Yolov3 | 0.8261 | 0.9417 | 0.9543 | 0.9074 |
SSD | 0.8585 | 0.8693 | 0.8888 | 0.8722 |
Faster R-CNN (EfficientNetB7) | 0.6997 | 0.8531 | 0.9179 | 0.8236 |
Yolovx | 0.8758 | 0.9483 | 0.9579 | 0.9273 |
Yolov7 | 0.8961 | 0.9506 | 0.9694 | 0.9387 |
Proposed | 0.9599 | 0.9647 | 0.9833 | 0.9693 |
Condition | AP | SD | Recall | SD |
---|---|---|---|---|
Dynamic + Darker | 0.9591 | 0.0410 | 0.9292 | 0.1113 |
Dynamic + Normal | 0.9785 | 0.0220 | 0.9771 | 0.0476 |
Dynamic + Brighter | 0.9609 | 0.0325 | 0.9526 | 0.0746 |
Static + Darker | 0.9834 | 0.0031 | 0.9939 | 0.0063 |
Static + Normal | 0.9920 | 0.0042 | 0.9994 | 0.0013 |
Static + Brighter | 0.9711 | 0.0156 | 0.9887 | 0.0198 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, J.; Li, Z.; Xu, W.; Zuo, J.; Rong, Z. Automated Detection of Methane Leaks by Combining Infrared Imaging and a Gas-Faster Region-Based Convolutional Neural Network Technique. Sensors 2025, 25, 5714. https://doi.org/10.3390/s25185714
Zuo J, Li Z, Xu W, Zuo J, Rong Z. Automated Detection of Methane Leaks by Combining Infrared Imaging and a Gas-Faster Region-Based Convolutional Neural Network Technique. Sensors. 2025; 25(18):5714. https://doi.org/10.3390/s25185714
Chicago/Turabian StyleZuo, Jinhui, Zhengqiang Li, Wenbin Xu, Jinxin Zuo, and Zhipeng Rong. 2025. "Automated Detection of Methane Leaks by Combining Infrared Imaging and a Gas-Faster Region-Based Convolutional Neural Network Technique" Sensors 25, no. 18: 5714. https://doi.org/10.3390/s25185714
APA StyleZuo, J., Li, Z., Xu, W., Zuo, J., & Rong, Z. (2025). Automated Detection of Methane Leaks by Combining Infrared Imaging and a Gas-Faster Region-Based Convolutional Neural Network Technique. Sensors, 25(18), 5714. https://doi.org/10.3390/s25185714