Non-Uniform Deployment of LWSN for Automated Railway Track Fastener Maintenance Robot and GA-LEACH Optimization
Abstract
1. Introduction
2. Related Work
3. Problem Description and System Model
3.1. Problem Description
3.2. Network Model
3.3. Energy Consumption Model
4. Methodology
4.1. Non-Uniform Node Deployment with Energy Consumption Balance
4.2. Improved Algorithm Description
4.3. Enhanced TDMA Communication Scheme
5. Simulation Experiment
5.1. Simulation Environment Setup
5.2. Analysis of Simulation Experiment Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ji, S.; Lee, S.; Yoo, S.; Suh, I.; Kwon, I.; Park, F.C.; Lee, S.; Kim, H. Learning-Based Automation of Robotic Assembly for Smart Manufacturing. Proc. IEEE 2021, 109, 423–440. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Wei, H.; Liu, M.; Liu, Y.H. Prediction, Planning, and Coordination of Thousand-Warehousing-Robot Networks With Motion and Communication Uncertainties. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1705–1717. [Google Scholar] [CrossRef]
- Yang, X.; Yan, J.; Wang, D.; Xu, Y.; Hua, G. WOAD3QN-RP: An intelligent routing protocol in wireless sensor networks—A swarm intelligence and deep reinforcement learning based approach. Expert Syst. Appl. 2024, 246, 123089. [Google Scholar]
- Kumar, N.; Vidyarthi, D.P. A Green Routing Algorithm for IoT-Enabled Software Defined Wireless Sensor Network. IEEE Sens. J. 2018, 18, 9449–9460. [Google Scholar] [CrossRef]
- Bera, S.; Misra, S.; Roy, S.K.; Obaidat, M.S. Soft-WSN: Software-Defined WSN Management System for IoT Applications. IEEE Syst. J. 2018, 12, 2074–2081. [Google Scholar] [CrossRef]
- Ma, D.; Lan, G.; Hassan, M.; Hu, W.; Das, S.K. Sensing, Computing, and Communications for Energy Harvesting IoTs: A Survey. IEEE Commun. Surv. Tutor. 2020, 22, 1222–1250. [Google Scholar] [CrossRef]
- Verma, S.; Kaur, S.; Adhya, A.; Kaddoum, G.; Brik, B. CROP: Cluster-Based Routing Using Optimized Framework for IoT-Based Precision Agriculture. In Proceedings of the ICC 2023—IEEE International Conference on Communications, Rome, Italy, 28 May–1 June 2023; pp. 4725–4730. [Google Scholar]
- Deng, L.; Wang, B.; Gao, Y.; Chen, Z.; Li, S. Certificateless Anonymous Signcryption Scheme with Provable Security in the Standard Model Suitable for Healthcare Wireless Sensor Networks. IEEE Internet Things J. 2023, 10, 15953–15965. [Google Scholar] [CrossRef]
- Bourdeau, M.; Waeytens, J.; Aouani, N.; Basset, P.; Nefzaoui, E. A Wireless Sensor Network for Residential Building Energy and Indoor Environmental Quality Monitoring: Design, Instrumentation, Data Analysis and Feedback. Sensors 2023, 23, 5580. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhou, H.; Liu, Z.; Deng, X. Energy Optimization of Wireless Sensor Embedded Cloud Computing Data Monitoring System in 6G Environment. Sensors 2023, 23, 1013. [Google Scholar] [CrossRef] [PubMed]
- Rajaoarisoa, L.; M’Sirdi, N.K.; Sayed-Mouchaweh, M.; Clavier, L. Decentralized fault-tolerant controller based on cooperative smart-wireless sensors in large-scale buildings. J. Netw. Comput. Appl. 2023, 214, 103605. [Google Scholar] [CrossRef]
- Sánchez, P.M.S.; Celdrán, A.H.; Bovet, G.; Pérez, G.M.; Stiller, B. SpecForce: A Framework to Secure IoT Spectrum Sensors in the Internet of Battlefield Things. IEEE Commun. Mag. 2023, 61, 174–180. [Google Scholar]
- Zhao, C.; Dong, M.; Ota, K.; Li, J.; Wu, J. Edge-MapReduce-Based Intelligent Information-Centric IoV: Cognitive Route Planning. IEEE Access 2019, 7, 50549–50560. [Google Scholar]
- Jain, N.; Bohara, V.A.; Gupta, A. iDEG: Integrated Data and Energy Gathering Framework for Practical Wireless Sensor Networks Using Compressive Sensing. IEEE Sens. J. 2019, 19, 1040–1051. [Google Scholar]
- Liu, X.; Liu, A.; Li, Z.; Tian, S.; Choi, Y.-j.; Sekiya, H.; Li, J. Distributed cooperative communication nodes control and optimization reliability for resource-constrained WSNs. Neurocomputing 2017, 270, 122–136. [Google Scholar] [CrossRef]
- Ahmad, A.; Hanzálek, Z. An Energy Efficient Schedule for IEEE 802.15.4/ZigBee Cluster Tree WSN with Multiple Collision Domains and Period Crossing Constraint. IEEE Trans. Ind. Inform. 2018, 14, 12–23. [Google Scholar] [CrossRef]
- Gungor, V.C.; Hancke, G.P. Industrial Wireless Sensor Networks: Challenges, Design Principles, and Technical Approaches. IEEE Trans. Ind. Electron. 2009, 56, 4258–4265. [Google Scholar] [CrossRef]
- Althunibat, S.; Al Tarawneh, Z. Multi-hop decision gathering scheme for target-detection wireless sensor networks. IET Commun. 2019, 13, 3278–3284. [Google Scholar] [CrossRef]
- Houssein, E.H.; Saad, M.R.; Hussain, K.; Zhu, W.; Shaban, H.; Hassaballah, M. Optimal Sink Node Placement in Large Scale Wireless Sensor Networks Based on Harris’ Hawk Optimization Algorithm. IEEE Access 2020, 8, 19381–19397. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, Y.; Zhang, K.; Liu, A.; Chen, J.; Shen, X.S. Lifetime and Energy Hole Evolution Analysis in Data-Gathering Wireless Sensor Networks. IEEE Trans. Ind. Inform. 2016, 12, 788–800. [Google Scholar]
- Muduli, L.; Jana, P.K.; Mishra, D.P. A novel wireless sensor network deployment scheme for environmental monitoring in longwall coal mines. Process Saf. Environ. Prot. 2017, 109, 564–576. [Google Scholar]
- Jordaan, C.; Malekian, R. Design of a monitoring and safety system for underground mines using wireless sensor networks. Int. J. Ad Hoc Ubiquitous Comput. 2019, 32, 14–28. [Google Scholar] [CrossRef]
- Delavernhe, F.; Lersteau, C.; Rossi, A.; Sevaux, M. Robust scheduling for target tracking using wireless sensor networks. Comput. Oper. Res. 2020, 116, 104873. [Google Scholar] [CrossRef]
- Raj Priyadarshini, R.; Sivakumar, N. Cluster head selection based on Minimum Connected Dominating Set and Bi-Partite inspired methodology for energy conservation in WSNs. J. King Saud Univ.-Comput. Inf. Sci. 2021, 33, 1132–1144. [Google Scholar] [CrossRef]
- Alhomyani, H.; Fadel, M.; Dimitriou, N.; Bakhsh, H.; Aldabbagh, G.; Alkhuraiji, S. Multi-Hop Routing Protocols for Oil Pipeline Leak Detection Systems. Electronics 2022, 11, 2078. [Google Scholar] [CrossRef]
- Yang, H.; Guo, H.; Jia, J.; Jia, Z.; Ren, A. Self-Organizing and Routing Approach for Condition Monitoring of Railway Tunnels Based on Linear Wireless Sensor Network. Sensors 2024, 24, 6502. [Google Scholar] [CrossRef]
- Behera, T.M.; Mohapatra, S.K.; Samal, U.C.; Khan, M.S.; Daneshmand, M.; Gandomi, A.H. Residual Energy-Based Cluster-Head Selection in WSNs for IoT Application. IEEE Internet Things J. 2019, 6, 5132–5139. [Google Scholar] [CrossRef]
- Rajpoot, V.; Garg, L.; Alam, M.Z.; Sangeeta; Parashar, V.; Tapashetti, P.; Arjariya, T. Analysis of machine learning based LEACH robust routing in the Edge Computing systems. Comput. Electr. Eng. 2021, 96, 107574. [Google Scholar] [CrossRef]
- SureshKumar, K.; Vimala, P. Energy efficient routing protocol using exponentially-ant lion whale optimization algorithm in wireless sensor networks. Comput. Netw. 2021, 197, 108250. [Google Scholar] [CrossRef]
- Maheshwari, P.; Sharma, A.K.; Verma, K. Energy efficient cluster based routing protocol for WSN using butterfly optimization algorithm and ant colony optimization. Ad Hoc Netw. 2021, 110, 102317. [Google Scholar] [CrossRef]
- Verma, S.; Zeadally, S.; Kaur, S.; Sharma, A.K. Intelligent and Secure Clustering in Wireless Sensor Network (WSN)-Based Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2022, 23, 13473–13481. [Google Scholar] [CrossRef]
- Sahoo, B.M.; Pandey, H.M.; Amgoth, T. A genetic algorithm inspired optimized cluster head selection method in wireless sensor networks. Swarm Evol. Comput. 2022, 75, 101151. [Google Scholar] [CrossRef]
- Ademaj, F.; Bernhard, H.P. Quality-of-Service-Based Minimal Latency Routing for Wireless Networks. IEEE Trans. Ind. Inform. 2022, 18, 1811–1822. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Liao, J.; Zhang, Y.; Li, H. An improved adaptive data rate algorithm of LoRaWAN for agricultural mobile sensor nodes. Comput. Electron. Agric. 2024, 219, 108773. [Google Scholar] [CrossRef]
- Alam, M.M.; Moh, S. Joint Trajectory Control, Frequency Allocation, and Routing for UAV Swarm Networks: A Multi-Agent Deep Reinforcement Learning Approach. IEEE Trans. Mob. Comput. 2024, 23, 11989–12005. [Google Scholar] [CrossRef]
- Sun, W.; Lv, Q.; Xiao, Y.; Liu, Z.; Tang, Q.; Li, Q.; Mu, D. Multi-Agent Reinforcement Learning for Dynamic Topology Optimization of Mesh Wireless Networks. IEEE Trans. Wirel. Commun. 2024, 23, 10501–10513. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, Y.; Yu, H.; Liu, J. Scalable QoS-Aware Multipath Routing in Hybrid Knowledge-Defined Networking With Multiagent Deep Reinforcement Learning. IEEE Trans. Mob. Comput. 2024, 23, 10628–10646. [Google Scholar] [CrossRef]
- Shi, T.; Duan, J. Research on the Application Framework of WSN in the Environmental Monitoring of High-Speed Trains. Railw. Stand. Des. 2018, 62, 154–158. [Google Scholar]
- Zhou, G.; Wang, P.; Zhu, Z.; Wang, H.; Li, W. Topology Control Strategy for Movable Sensor Networks in Ultradeep Shafts. IEEE Trans. Ind. Inform. 2018, 14, 2251–2260. [Google Scholar] [CrossRef]
- Duan, J.; Shi, T.; Lv, X.; Li, Z. Optimal node deployment scheme for WSN-based railway environment monitoring system. In Proceedings of the 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, China, 28–30 May 2016; pp. 6529–6534. [Google Scholar]
- Abo-Zahhad, M.; Sabor, N.; Sasaki, S.; Ahmed, S.M. A centralized immune-Voronoi deployment algorithm for coverage maximization and energy conservation in mobile wireless sensor networks. Inf. Fusion 2016, 30, 36–51. [Google Scholar] [CrossRef]
- Hu, Y.; Bao, Y.; Wang, Y. Energy-efficient Node Deployment Strategy for Strip-shaped Wireless Sensor Networks. Comput. Eng. Appl. 2017, 53, 77–81+87. [Google Scholar]
- Li, D.-F. Compromise ratio method for fuzzy multi-attribute group decision making. Appl. Soft Comput. 2007, 7, 807–817. [Google Scholar] [CrossRef]
- Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670. [Google Scholar] [CrossRef]
- Mohemed, R.E.; Saleh, A.I.; Abdelrazzak, M.; Samra, A.S. Energy-efficient routing protocols for solving energy hole problem in wireless sensor networks. Comput. Netw. 2017, 114, 51–66. [Google Scholar]
- Tolani, M.; Sharma, S.; Singh, R.K. Lifetime improvement of wireless sensor network by information sensitive aggregation method for railway condition monitoring. Ad Hoc Netw. 2019, 87, 128–145. [Google Scholar] [CrossRef]
- Hodge, V.J.; Keefe, S.O.; Weeks, M.; Moulds, A. Wireless Sensor Networks for Condition Monitoring in the Railway Industry: A Survey. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1088–1106. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Z.; Zhang, Z.; Jia, Z. ETMRM: An Energy-efficient Trust Management and Routing Mechanism for SDWSNs. Comput. Netw. 2018, 139, 119–135. [Google Scholar] [CrossRef]
- Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, Hawaii, 4–7 January 2000; Volume 12, p. 10. [Google Scholar]
- Scrucca, L. GA: A Package for Genetic Algorithms in R. J. Stat. Softw. 2013, 53, 1–37. [Google Scholar] [CrossRef]
- Azim, A.; Islam, M.M. A relay node based hybrid low energy adaptive clustering hierarchy for wireless sensor networks. Int. J. Energy Inf. Commun. 2012, 3, 41–54. [Google Scholar]
- Gupta, V.; Pandey, R. An improved energy aware distributed unequal clustering protocol for heterogeneous wireless sensor networks. Eng. Sci. Technol. Int. J. 2016, 19, 1050–1058. [Google Scholar] [CrossRef]
- Chauhan, V.; Soni, S. Energy aware unequal clustering algorithm with multi-hop routing via low degree relay nodes for wireless sensor networks. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 2469–2482. [Google Scholar] [CrossRef]
- Jiang, C.-J. Energy-balanced unequal clustering protocol for wireless sensor networks. J. China Univ. Posts Telecommun. 2010, 17, 94–99. [Google Scholar] [CrossRef]
- Li, C.; Ye, M.; Chen, G.; Wu, J. An energy-efficient unequal clustering mechanism for wireless sensor networks. In Proceedings of the IEEE International Conference on Mobile Adhoc and Sensor Systems Conference, Washington, DC, USA, 7 November 2005; pp. 8–604. [Google Scholar]
- Shen, J.; Wang, A.; Wang, C.; Hung, P.C.K.; Lai, C.F. An Efficient Centroid-Based Routing Protocol for Energy Management in WSN-Assisted IoT. IEEE Access 2017, 5, 18469–18479. [Google Scholar] [CrossRef]
Parameter Symbol | Parameter Description | Value Assignment |
---|---|---|
Initial Energy | 0.5 J | |
Unit energy Consumption | 50 nJ | |
Energy Consumption Coefficient | 10 pJ | |
Energy Consumption Coefficient | 0.0013 pJ | |
k | Packet Length | 1024 bit |
N | Total Number of Nodes | 240 |
Communication Distance Threshold | 87.7 m | |
p | Expected Cluster Head Proportion | 0.05 |
Protocol | FDN | HDN | ADN |
---|---|---|---|
EADUC | 945 | 1163 | 1543 |
EAUCA | 890 | 1174 | 1687 |
EBUC | 776 | 1215 | 1708 |
EEUC | 999 | 1182 | 1681 |
LEACH | 963 | 1147 | 1630 |
LEACH-C | 1015 | 1160 | 1905 |
GAECRPQ | 1445 | 1729 | 1939 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Meng, J. Non-Uniform Deployment of LWSN for Automated Railway Track Fastener Maintenance Robot and GA-LEACH Optimization. Sensors 2025, 25, 5611. https://doi.org/10.3390/s25185611
Shen Y, Meng J. Non-Uniform Deployment of LWSN for Automated Railway Track Fastener Maintenance Robot and GA-LEACH Optimization. Sensors. 2025; 25(18):5611. https://doi.org/10.3390/s25185611
Chicago/Turabian StyleShen, Yanni, and Jianjun Meng. 2025. "Non-Uniform Deployment of LWSN for Automated Railway Track Fastener Maintenance Robot and GA-LEACH Optimization" Sensors 25, no. 18: 5611. https://doi.org/10.3390/s25185611
APA StyleShen, Y., & Meng, J. (2025). Non-Uniform Deployment of LWSN for Automated Railway Track Fastener Maintenance Robot and GA-LEACH Optimization. Sensors, 25(18), 5611. https://doi.org/10.3390/s25185611