The Information Consistency Between Full- and Improved Dual-Polarimetric Mode SAR for Multiscenario Oil Spill Detection
Abstract
1. Introduction
- A detailed comparison of information representation and abundance among different improved DP modes; analysis of consistency and differences between DP—and FP modes; and examination of similarity representations across DP modes.
- The introduction of FP features into improved DP structural modes to evaluate the feature extraction and adaptation of homologous parameters across multiple polarimetric modes with multisource oil spill data.
- A comprehensive analysis of the commonly polarimetric features from different DP structures is conducted for statistical analyses of oil spill information and the separability, contrast, classification ability, and classification contribution.
2. Dataset Description
3. Method
3.1. The Structure from FP Data
3.2. Structure from Improved DP Data
3.3. Comparative Analysis and Feature Extraction
4. Results and Analysis
4.1. Theoretical Relationships Between FP and DP Entropy Under Different Structures
4.2. Information Consistency Comparison Between FP and DP Entropy
4.2.1. Comparative Analysis and Verification Based on Simulated DP Oil Spill Data
4.2.2. Difference Comparison Experiment Based on Different Entropies
4.3. Comparison of Different Polarimetric Feature Parameters
4.4. Experiment with Sentinel-1 DP Oil Spill Scene Data
4.5. Classification Experiment Based on Different Polarimetric Features with Sentinel-1A Data
5. Discussion
5.1. Consistency of Information Between Different DP Structures and FP Structures
5.2. Performance of Oil Spill Polarimetric Features with Different DP Scattering Structures
6. Conclusions
- For DP systems with different scattering structures and for FP systems under multi-source oil spill scenarios, when polarimetric scattering entropy H is used as a reference, the HL under improved structure shows higher information consistency with the FP data compared with the HC and HJ structures. Across various oil spill scenarios, the clustering behavior of HL in target samples aligns more closely with fully polarimetric H, exhibiting similar means and variances. Whether in qualitative comparisons (visualization and distribution ranges) or quantitative analyses (statistical indicators and contrast results), HL generally shows the greatest consistency with FP data.
- In comparing the effectiveness of different DP modes for oil spill detection—whether based on simulated or actual DP data—the polarimetric features extracted using the CL covariance matrix consistently produced optimal or near-optimal results compared with those obtained using CC and CJ covariance matrices. Among the homology-defined polarimetric parameter sets from the three structures, the features extracted using the CL covariance matrix accounted for the highest proportion of high-contribution features.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fingas, M.; Brown, C.E. Review of oil spill remote sensing: The current state of the art. In Oil Spill Science and Technology; Elsevier: Amsterdam, The Netherlands, 2025; pp. 309–358. [Google Scholar]
- Fingas, M.; Brown, C.E. A review of oil spill remote sensing. Sensors 2017, 18, 91. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, W.; Wan, Z.; Li, S.; Huang, T.; Fei, Y. Oil spills from global tankers: Status review and future governance. J. Clean. Prod. 2019, 227, 20–32. [Google Scholar] [CrossRef]
- Liu, B.; Wu, P.; Chen, C. Marine oil slick detection based on multi-polarimetric features matching method using polarimetric synthetic aperture radar data. Sensors 2019, 19, 5176. [Google Scholar] [CrossRef]
- Skrunes, S.; Johansson, A.M.; Brekke, C. Synthetic aperture radar remote sensing of operational platform produced water releases. Remote Sens. 2019, 11, 2882. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; Li, X.; Pichel, W.G. Mapping sea surface oil slicks using radarsat-2 quad-polarization SAR image. Geophys. Res. Lett. 2011, 38, L10602. [Google Scholar] [CrossRef]
- Hu, C.; Li, X.; Pichel, W.G.; Muller-Karger, F.E. Detection of natural oil slicks in the NW Gulf of Mexico using MODIS imagery. Geophys. Res. Lett. 2009, 36, L01604. [Google Scholar] [CrossRef]
- Tong, S.; Liu, X.; Chen, Q.; Zhang, Z.; Xie, G. Multi-feature based ocean oil spill detection for polarimetric sar data using random forest and the self-similarity parameter. Remote Sens. 2019, 11, 451. [Google Scholar] [CrossRef]
- Migliaccio, M.; Nunziata, F.; Gambardella, A. On the copolarised phase difference for oil spill observation. Int. J. Remote Sens. 2007, 6, 1587–1602. [Google Scholar]
- Lee, J.-S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Skrunes, S.; Brekke, C.; Eltoft, T.; Kudryavtsev, V. Comparing near-coincident C- and X-band SAR acquisitions of marine oil spills. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1958–1975. [Google Scholar] [CrossRef]
- Song, D.; Zhen, Z.; Wang, B.; Li, X.; Gao, L.; Wang, N.; Xie, T.; Zhang, T. A novel marine oil spillage identification scheme based on convolution neural network feature extraction from fully polarimetric SAR imagery. IEEE Access 2020, 8, 59801–59820. [Google Scholar] [CrossRef]
- Skrunes, S.; Brekke, C.; Eltoft, T. Characterization of marine surface slicks by Radarsat-2 multipolarization features. IEEE Trans. Geosci. Remote Sens. 2013, 52, 5302–5319. [Google Scholar] [CrossRef]
- Li, H.; Perrie, W.; He, Y.; Wu, J.; Luo, X. Analysis of the polarimetric SAR scattering properties of oil-covered waters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 3751–3759. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Chen, J.; Zhang, H. Improved compact polarimetric SAR quad-pol reconstruction algorithm for oil spill detection. IEEE Geosci. Remote Sens. Lett. 2013, 11, 1139–1142. [Google Scholar] [CrossRef]
- Liang, L.; Zhang, Y.; Li, D.; Dong, X. A New entropy estimation method for dual-polarimetric SAR data: Comparative analysis with quad- and other dual-polarization approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 847–864. [Google Scholar] [CrossRef]
- Cloude, S. The dual polarization entropy/alpha decomposition: A PALSAR case study. Sci. Appl. SAR Polarim. Polarim. Interferom. 2007, 644, 2. [Google Scholar]
- Baek, W.-K.; Jung, H.-S. Performance comparison of oil spill and ship classification from x-band dual- and single-polarized SAR image using support vector machine, random forest, and deep neural network. Remote Sens. 2021, 13, 3203. [Google Scholar] [CrossRef]
- Chaturvedi, S.K.; Banerjee, S.; Lele, S. An assessment of oil spill detection using sentinel 1 SAR-C images. J. Ocean Eng. Sci. 2020, 5, 116–135. [Google Scholar] [CrossRef]
- Ji, K.; Wu, Y. Scattering mechanism extraction by a modified cloude-pottier decomposition for dual polarization SAR. Remote Sens. 2015, 7, 7447–7470. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Cloude, S.R.; Ballester-Berman, J.D. Rice phenology monitoring by means of SAR polarimetry at X-band. IEEE Trans. Geosci. Remote 2011, 50, 2695–2709. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens. Environ. 2020, 247, 111954. [Google Scholar] [CrossRef]
- Velotto, D.; Bentes, C.; Tings, B.; Lehner, S. Comparison of Sentinel-1 and Terrasar-x for ship detection. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar]
- Magrì, S.; Vairo, T.; Reverberi, A.; Fabiano, B. Oil spill identification and monitoring from sentinel-1 SAR satellite earth observations: A machine learning approach. Chem. Eng. Trans. 2021, 86, 379–384. [Google Scholar]
- Zanchetta, A.; Zecchetto, S. Wind direction retrieval from sentinel-1 SAR images using Resnet. Remote Sens. Environ. 2021, 253, 112178. [Google Scholar] [CrossRef]
- Biggs, J.; Anantrasirichai, N.; Albino, F.; Lazecky, M.; Maghsoudi, Y. Large-scale demonstration of machine learning for the detection of volcanic deformation in sentinel-1 satellite imagery. Bull. Volcanol. 2022, 84, 100. [Google Scholar] [CrossRef] [PubMed]
- Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.-P. Fusion of sentinel-1 and sentinel-2 image time series for permanent and temporary surface water mapping. Int. J. Remote Sens. 2019, 40, 9026–9049. [Google Scholar] [CrossRef]
- Gül, Y.; Poyraz, B.; Poyraz, F. Comparison of the monitoring of surface deformations in open-pit mines with sentinel-1a and Terrasar-x satellite radar data. Environ. Monit. Assess. 2024, 196, 581. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.; Cosh, M.H.; Lakshmi, V.; Kwon, Y.; McCarty, G.W. Assessment and combination of SMAP and sentinel-1a/b-derived soil moisture estimates with land surface model outputs in the mid-Atlantic coastal plain, USA. IEEE Trans. Geosci. Remote Sens. 2021, 59, 991–1011. [Google Scholar] [CrossRef]
- Liu, H.; Song, C.; Li, Z.; Liu, Z.; Ta, L.; Zhang, X.; Chen, B.; Han, B.; Peng, J. A new method for the identification of earthquake-damaged buildings using sentinel-1 multitemporal coherence optimized by homogeneous SAR pixels and histogram matching. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7124–7143. [Google Scholar] [CrossRef]
- Liu, J.; Hu, J.; Li, Z.; Ma, Z.; Wu, L.; Jiang, W.; Feng, G.; Zhu, J. Complete three-dimensional coseismic displacements due to the 2021 Maduo Earthquake in Qinghai Province, China from sentinel-1 and ALOS-2 SAR images. Sci. China Earth Sci. 2022, 65, 687–697. [Google Scholar] [CrossRef]
- Rusin, J.; Doulgeris, A.P.; Scott, K.A.; Lavergne, T.; Taelman, C. High resolution sea ice concentration using a sentinel-1 U-net ice-water classifier. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 9380–9395. [Google Scholar] [CrossRef]
- Velotto, D.; Bentes, C.; Tings, B.; Lehner, S. First comparison of sentinel-1 and Terrasar-x data in the framework of maritime targets detection: South Italy case. IEEE J. Ocean. Eng. 2016, 41, 993–1006. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Wang, C.; Zhang, B.; Liu, M. Crop classification based on temporal information using sentinel-1 SAR time-series data. Remote Sens. 2018, 11, 53. [Google Scholar] [CrossRef]
- Yang, H.; Pan, B.; Wu, W.; Tai, J. Field-based rice classification in wuhua county through integration of multi-temporal sentinel-1a and landsat-8 OLI data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 226–236. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Peli, E. Contrast in complex images. J. Opt. Soc. Am. A 1990, 7, 2032–2040. [Google Scholar] [CrossRef] [PubMed]
- Hoogeboom, P.; Lidicky, L. Introduction to microwave active techniques and backscatter properties. In Remote Sensing of the European Seas; Springer: Dordrecht, The Netherlands, 2008; pp. 251–268. [Google Scholar]
- Skrunes, S.; Brekke, C.; Jones, C.E.; Espeseth, M.M.; Holt, B. Effect of wind direction and incidence angle on polarimetric SAR observations of slicked and unslicked sea surfaces. Remote Sens. Environ. 2018, 213, 73–91. [Google Scholar] [CrossRef]
- Schuler, D.L.; Lee, J.-S. Mapping ocean surface features using biogenic slick-fields and SAR polarimetric decomposition techniques. IEE Proc. Radar Sonar Navig. 2006, 153, 260–270. [Google Scholar] [CrossRef]
No. | Test Site Region | Data Source | Acquisition Time (UTC) | Slick Information |
---|---|---|---|---|
1 | Norway, North Sea | Radarsat-2/C-band | 8 June 2011, 17:27 | Different oil types |
2 | Gulf of Mexico | Radarsat-2/C-band | 8 May 2010, 12:01 | Natural crude oil seeps |
3 | Gulf of Mexico | Radarsat-2/C-band | 8 May 2015, 23:53 | Nearshore oil spill |
4 | Philippines | ALOS/L-band | 27 August 2006, 14:22 | Heavy oil spill from a tanker |
5 | Suez Canal | Sentinel-1A | 26 April 2015 | illegal discharge from ships |
Dual-Polarimetric Structure | Scattering Vector | Corresponding Relationship to Full-Polarimetric Covariance Matrix |
---|---|---|
Cloude [17] | ||
Ji and Wu [20] | ||
Liang [16] |
Measurement Index | Mean/Standard Deviation | ||||
---|---|---|---|---|---|
Data Scenario/Class Label | H | HC | HJ | HL | |
Radarsat-2: Oil Type Differences | Crude | 0.7677/0.1008 | 0.5314/0.1213 | 0.8841/0.0878 | 0.7303/0.1229 |
Emulsion | 0.7032/0.091 | 0.4120/0.0962 | 0.7984/0.1046 | 0.6049/0.1152 | |
Plant | 0.3997/0.093 | 0.1998/0.0632 | 0.4963/0.119 | 0.3247/0.0931 | |
Sea | 0.237/0.058 | 0.1129/0.0351 | 0.3135/0.083 | 0.1919/0.0563 | |
Radarsat-2: Thickness Differences | Thick | 0.9328/0.0297 | 0.8539/0.0802 | 0.8785/0.0725 | 0.9391/0.0439 |
Thin | 0.83161/0.0844 | 0.6591/0.1277 | 0.9251/0.0591 | 0.8388/0.1041 | |
Sea | 0.5758/0.0923 | 0.3737/0.0904 | 0.7594/0.1062 | 0.5596/0.1107 | |
Radarsat-2: Nearshore Oil Spill | Thick | 0.362/0.10044 | 0.1375/0.0516 | 0.3675/0.1133 | 0.2301/0.0801 |
Thin | 0.30262/0.0933 | 0.1153/0.0426 | 0.3171/0.0993 | 0.1948/0.0677 | |
Sea | 0.14941/0.0376 | 0.0649/0.0211 | 0.1923/0.0564 | 0.1132/0.0352 | |
Land | 0.79176/0.0884 | 0.6526/0.1294 | 0.9109/0.0804 | 0.8286/0.1127 | |
ALOS-1: Tanker Oil Spill | Thick | 0.90049/0.0493 | 0.6976/0.0933 | 0.9518/0.0406 | 0.8772/0.0859 |
Thin | 0.75208/0.0835 | 0.5528/0.0713 | 0.9272/0.0489 | 0.7643/0.0720 | |
Sea | 0.22518/0.0588 | 0.1333/0.0456 | 0.3602/0.1007 | 0.2248/0.0709 |
Measurement Index | MC | ||||
---|---|---|---|---|---|
Data Scenario/Class Label | HC | HJ | HL | ||
Scene 1 | Radarsat-2: Oil Type Differences | Crude | 0.18188 | −0.07069 | 0.02495 |
Emulsion | 0.26108 | −0.06339 | 0.07512 | ||
Plant | 0.3334 | −0.10775 | 0.10359 | ||
Sea | 0.35471 | 0.13862 | 0.10544 | ||
Scene 2 | Radarsat-2: Relative Thickness | Thick | 0.04416 | 0.03002 | −0.00329 |
Thin | 0.11569 | −0.05317 | −0.00433 | ||
Sea | 0.21313 | −0.13193 | 0.01681 | ||
Scene 3 | Radarsat-2: Nearshore Oil Spill | Thick | 0.46246 | 0.00315 | 0.23618 |
Thin | 0.44925 | −0.03557 | 0.20901 | ||
Sea | 0.3741 | −0.1364 | 0.11958 | ||
Land | 0.10773 | −0.06335 | −0.01284 | ||
Scene 4 | ALOS-1: Tanker Oil Spill | Thick | 0.12736 | −0.02775 | 0.01308 |
Thin | 0.15265 | −0.10429 | −0.00809 | ||
Sea | 0.25619 | −0.23068 | 0.00249 |
C vs. S | E vs. S | P vs. S | C vs. P | E vs. P | C vs. E | Thick vs. S | Thin vs. S | Thick vs. Thin | Thin vs. S | Thick vs. Thin | Oil vs. Sea | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H | C | 0.13 | 0.3 | 0.695 | 0.13 | 0.3 | 0.695 | 0.0425 | 0.34 | 0.31 | 0.013 | 0.68 | 0.5725 |
J | 0.135 | 0.2975 | 0.6975 | 0.135 | 0.2975 | 0.6975 | 0.4225 | 0.4225 | 0.915 | 0.02 | 0.78 | 0.5425 | |
L | 0.13 | 0.2875 | 0.6925 | 0.13 | 0.2875 | 0.6925 | 0.06 | 0.3525 | 0.36 | 0.01 | 0.6533 | 0.525 | |
A | C | 0.22 | 0.265 | 0.865 | 0.22 | 0.265 | 0.865 | 0.035 | 0.3375 | 0.3225 | 0.0167 | 0.6733 | 0.53 |
J | 0.2125 | 0.35 | 0.715 | 0.2125 | 0.35 | 0.715 | 0.4 | 0.4075 | 0.8975 | 0.02 | 0.76 | 0.565 | |
L | 0.215 | 0.3425 | 0.7 | 0.215 | 0.3425 | 0.7 | 0.055 | 0.34 | 0.375 | 0.01 | 0.67 | 0.56 | |
α | C | 0.1775 | 0.315 | 0.7875 | 0.1775 | 0.315 | 0.7875 | 0.0375 | 0.4 | 0.3425 | 0.0167 | 0.6967 | 0.575 |
J | 0.14 | 0.27 | 0.7275 | 0.14 | 0.27 | 0.7275 | 0.03 | 0.3575 | 0.34 | 0.0033 | 0.67 | 0.5575 | |
L | 0.1675 | 0.275 | 0.7575 | 0.1675 | 0.275 | 0.7575 | 0.0375 | 0.375 | 0.3275 | 0.0233 | 0.6933 | 0.555 | |
PH | C | 0.1425 | 0.2925 | 0.71 | 0.1425 | 0.2925 | 0.71 | 0.0425 | 0.34 | 0.3025 | 0.0233 | 0.6733 | 0.56 |
J | 0.155 | 0.3025 | 0.705 | 0.155 | 0.3025 | 0.705 | 0.3975 | 0.4075 | 0.9325 | 0.0133 | 0.75 | 0.5475 | |
L | 0.1275 | 0.3275 | 0.6775 | 0.1275 | 0.3275 | 0.6775 | 0.055 | 0.335 | 0.3625 | 0.0167 | 0.68 | 0.5475 | |
C1 | C | 0.195 | 0.345 | 0.6825 | 0.195 | 0.345 | 0.6825 | 0.5475 | 0.395 | 0.77 | 0.01 | 0.77 | 0.5275 |
J | 0.63 | 0.8675 | 0.695 | 0.63 | 0.8675 | 0.695 | 0.41 | 0.4175 | 0.8975 | 0.6867 | 0.77 | 0.5425 | |
L | 0.27 | 0.295 | 0.8775 | 0.27 | 0.295 | 0.8775 | 0.2175 | 0.8525 | 0.36 | 0.0633 | 0.67 | 0.5475 | |
C2 | C | 0.21 | 0.3475 | 0.685 | 0.21 | 0.3475 | 0.685 | 0.035 | 0.3375 | 0.305 | 0.0133 | 0.6667 | 0.53 |
J | 0.1533 | 0.33 | 0.69 | 0.1533 | 0.33 | 0.69 | 0.3975 | 0.41 | 0.9025 | 0.0167 | 0.77 | 0.5675 | |
L | 0.1425 | 0.2875 | 0.695 | 0.1425 | 0.2875 | 0.695 | 0.055 | 0.35 | 0.3725 | 0.0133 | 0.6467 | 0.54 | |
C3 | C | 0.2 | 0.3375 | 0.695 | 0.2 | 0.3375 | 0.695 | 0.0425 | 0.34 | 0.305 | 0.01 | 0.6767 | 0.5375 |
J | 0.15 | 0.3 | 0.705 | 0.15 | 0.3 | 0.705 | 0.4 | 0.4025 | 0.9 | 0.0133 | 0.8333 | 0.5575 | |
L | 0.13 | 0.2875 | 0.6925 | 0.13 | 0.2875 | 0.6925 | 0.06 | 0.3375 | 0.3525 | 0.01 | 0.66 | 0.53 | |
C4 | C | 0.1975 | 0.335 | 0.7 | 0.1975 | 0.335 | 0.7 | 0.76 | 0.48 | 0.535 | 0.01 | 0.9467 | 0.535 |
J | 0.3475 | 0.6075 | 0.6925 | 0.3475 | 0.6075 | 0.6925 | 0.4 | 0.4125 | 0.92 | 0.53 | 0.7667 | 0.5525 | |
L | 0.48 | 0.3825 | 0.8675 | 0.48 | 0.3825 | 0.8675 | 0.0975 | 0.595 | 0.3575 | 0.1933 | 0.66 | 0.5325 |
Class Label | H | Alpha | A | PH | HA | H(1-A) | A(1-H) | (1-H)(1-A) | |
---|---|---|---|---|---|---|---|---|---|
Polarimetric Feature | |||||||||
thick vs. sea | C | 0.0134 | 0.025 | 0.01 | 0.04 | 0.495 | 0.05 | 0.005 | 0.3 |
J | 0.4832 | 0.02 | 0.61 | 0.635 | 0.6 | 0.615 | 0.595 | 0.6 | |
L | 0.0201 | 0.025 | 0.005 | 0.015 | 0.09 | 0.01 | 0.03 | 0.02 | |
thin vs. sea | C | 0.1678 | 0.4 | 0.395 | 0.23 | 0.205 | 0.285 | 0.22 | 0.275 |
J | 0.1342 | 0.305 | 0.24 | 0.225 | 0.225 | 0.22 | 0.24 | 0.225 | |
L | 0.1275 | 0.3 | 0.21 | 0.22 | 0.98 | 0.21 | 0.21 | 0.475 | |
thick vs. thin | C | 0.0872 | 0.095 | 0.09 | 0.12 | 0.315 | 0.09 | 0.095 | 0.145 |
J | 0.4832 | 0.1 | 0.535 | 0.525 | 0.51 | 0.535 | 0.54 | 0.525 | |
L | 0.1074 | 0.1 | 0.1 | 0.095 | 0.1 | 0.1 | 0.095 | 0.09 |
Class/Accuracy | Oil | Seawater |
---|---|---|
Producer Accuracy | 86.87% | 99.3% |
User’s Accuracy | 86.34% | 99.36% |
Average Accuracy | 92% | |
Kappa | 0.8594 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Lv, G.; Wang, T.; Wang, X.; Zhao, F. The Information Consistency Between Full- and Improved Dual-Polarimetric Mode SAR for Multiscenario Oil Spill Detection. Sensors 2025, 25, 5551. https://doi.org/10.3390/s25175551
Li G, Lv G, Wang T, Wang X, Zhao F. The Information Consistency Between Full- and Improved Dual-Polarimetric Mode SAR for Multiscenario Oil Spill Detection. Sensors. 2025; 25(17):5551. https://doi.org/10.3390/s25175551
Chicago/Turabian StyleLi, Guannan, Gaohuan Lv, Tong Wang, Xiang Wang, and Fen Zhao. 2025. "The Information Consistency Between Full- and Improved Dual-Polarimetric Mode SAR for Multiscenario Oil Spill Detection" Sensors 25, no. 17: 5551. https://doi.org/10.3390/s25175551
APA StyleLi, G., Lv, G., Wang, T., Wang, X., & Zhao, F. (2025). The Information Consistency Between Full- and Improved Dual-Polarimetric Mode SAR for Multiscenario Oil Spill Detection. Sensors, 25(17), 5551. https://doi.org/10.3390/s25175551