Smart Bluetooth Stakes: Deployment of Soil Moisture Sensors with Rotating High-Gain Antenna Receiver on Center Pivot Irrigation Boom in a Commercial Wheat Field
Abstract
1. Introduction
2. Materials and Methods
2.1. Smart Bluetooth Stakes
2.1.1. Subsystem Power
2.1.2. Subsystem Nail Probes
2.1.3. Subsystem Sensing
2.1.4. Subsystem Data Storage and Transmission
2.2. Smart Receivers
2.2.1. Subsystem Smartphone
2.2.2. Subsystem Power
2.2.3. Subsystem Communication
2.2.4. Subsystem Rotation and Control
2.2.5. Subsystem File Storage and Backend
2.3. Use of AI
3. Field Experiment
3.1. Overview of Elberta Field
3.2. Stake Deployment Pattern
3.3. Deployment Timing and Phases
4. Results
4.1. Packet Reception Rate
4.2. Stake Power
4.3. Moisture Estimation
4.4. Antenna Performance
4.5. Factors Impacting Reception Rates
4.6. Boom Angle Reconstruction
4.7. System Cost
5. Discussion
5.1. Receiver Antenna Choice
5.2. Canopy Attenuation
5.3. Stake RF Matching
5.4. Measurement Accuracy
5.5. Solar Energy Harvesting
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BLE | Bluetooth Low Energy |
RSSI | Received Signal Strength Indicator |
EIRP | Equivalent Isotropic Radiated Power |
ToA | Time Over Air |
WUE | Water Use Efficiency |
MPPT | Maximum Power Point Tracking |
LAI | Leaf Area Index |
MCU | Microcontroller Unit |
WSN | Wireless Sensor Network |
UUID | Universally Unique Identifier |
NAIP | National Aerial Imagery Program |
GPS | Global Positioning System |
IMU | Inertial Measurement Unit |
PCB | Printed Circuit Board |
UART | Universal Asynchronous Receiver Transmitter |
References
- UNESCO World Water Assessment Programme. The United Nations World Water Development Report 2024: Water for Prosperity and Peace; UNESCO: Paris, France, 2024; ISBN 978-92-3-100657-9. [Google Scholar]
- Zhang, K.; Li, X.; Zheng, D.; Zhang, L.; Zhu, G. Estimation of Global Irrigation Water Use by the Integration of Multiple Satellite Observations. Water Resour. Res. 2022, 58, e2021WR030031. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Douglas, E.M.; Green, P.A.; Revenga, C. Geospatial Indicators of Emerging Water Stress: An Application to Africa. AMBIO J. Hum. Environ. 2005, 34, 230–236. [Google Scholar] [CrossRef]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater Use for Irrigation—A Global Inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef]
- O’Shaughnessy, S.A.; Evett, S.R.; Colaizzi, P.D. Dynamic Prescription Maps for Site-Specific Variable Rate Irrigation of Cotton. Agric. Water Manag. 2015, 159, 123–138. [Google Scholar] [CrossRef]
- Farré, I.; Faci, J.M. Deficit Irrigation in Maize for Reducing Agricultural Water Use in a Mediterranean Environment. Agric. Water Manag. 2009, 96, 383–394. [Google Scholar] [CrossRef]
- LaRue, J.L. Variable rate irrigation 2010 field results for Center Plains Conference. In Proceedings of the 23rd Annual Central Plains Irrigation Conference, Burlington, CO, USA, 22–23 February 2011. [Google Scholar]
- O’Shaughnessy, S.A.; Evett, S.R.; Andrade, M.A.; Workneh, F.; Price, J.A.; Rush, C.M. Site-Specific Variable-Rate Irrigation as a Means to Enhance Water Use Efficiency. Trans. ASABE 2016, 59, 239–249. [Google Scholar] [CrossRef]
- Koch, B.; Khosla, R.; Frasier, W.M.; Westfall, D.G.; Inman, D. Economic Feasibility of Variable-Rate Nitrogen Application Utilizing Site-Specific Management Zones. Agron. J. 2004, 96, 1572–1580. [Google Scholar] [CrossRef]
- Schimmelpfennig, D. Farm Profits and Adoption of Precision Agriculture; Technical Report ERR-217; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2016.
- U.S. Department of Agriculture, National Agricultural Statistics Service. 2023 Farm and Ranch Irrigation Survey; Technical Report; U.S. Department of Agriculture: Washington, DC, USA, 2023.
- Zhang, J.; Guan, K.; Peng, B.; Jiang, C.; Zhou, W.; Yang, Y.; Pan, M.; Franz, T.E.; Heeren, D.M.; Rudnick, D.R.; et al. Challenges and Opportunities in Precision Irrigation Decision-Support Systems for Center Pivots. Environ. Res. Lett. 2021, 16, 053003. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Murden, D.; Robinson, J.R.C. Spatial variability in yields and profits within ten grain sorghum fields in south texas. Trans. ASAE 2002, 45, 897. [Google Scholar] [CrossRef]
- Woolley, E.A. Soil Water Dynamics Within Variable Rate Irrigation Zones of Winter Wheat. Master’s Thesis, Brigham Young University, Provo, UT, USA, 2020. [Google Scholar]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef]
- Maresma, A.; Chamberlain, L.; Tagarakis, A.; Kharel, T.; Godwin, G.; Czymmek, K.J.; Shields, E.; Ketterings, Q.M. Accuracy of NDVI-derived Corn Yield Predictions Is Impacted by Time of Sensing. Comput. Electron. Agric. 2020, 169, 105236. [Google Scholar] [CrossRef]
- Bogena, H.R.; Weuthen, A.; Huisman, J.A. Recent Developments in Wireless Soil Moisture Sensing to Support Scientific Research and Agricultural Management. Sensors 2022, 22, 9792. [Google Scholar] [CrossRef]
- Balivada, S.; Grant, G.; Zhang, X.; Ghosh, M.; Guha, S.; Matamala, R. A Wireless Underground Sensor Network Field Pilot for Agriculture and Ecology: Soil Moisture Mapping Using Signal Attenuation. Sensors 2022, 22, 3913. [Google Scholar] [CrossRef] [PubMed]
- Vellidis, G.; Tucker, M.; Perry, C.; Reckford, D.; Butts, C.; Henry, H.; Liakos, V.; Hill, R.; Edwards, W. A Soil Moisture Sensor-Based Variable Rate Irrigation Scheduling System. In Precision Agriculture ’13; Stafford, J.V., Ed.; Brill|Wageningen Academic: Wageningen, The Netherlands, 2013; pp. 713–720. [Google Scholar] [CrossRef]
- Briciu-Burghina, C.; Zhou, J.; Ali, M.I.; Regan, F. Demonstrating the Potential of a Low-Cost Soil Moisture Sensor Network. Sensors 2022, 22, 987. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, U.; Bakhsh, A.; Shahid, M.A.; Shah, S.H.H.; Ali, S. Development of Low Cost Indigenized Soil Moisture Sensors for Precision Irrigation. Pak. J. Agric. Res. 2020, 57, 205–217. [Google Scholar] [CrossRef]
- Babusiak, B.; Smondrk, M.; Borik, S. Design of Ultra-Low-Energy Temperature and Humidity Sensor Based on nRF24 Wireless Technology. In Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary, 1–3 July 2019; pp. 397–401. [Google Scholar] [CrossRef]
- Vandôme, P.; Leauthaud, C.; Moinard, S.; Sainlez, O.; Mekki, I.; Zairi, A.; Belaud, G. Design of a Low-Cost Wireless Sensor Network for Drip Irrigation Monitoring in Tunisia. Smart Agric. Technol. 2023, 4, 100227. [Google Scholar] [CrossRef]
- Widhalm, D.; Goeschka, K.M.; Kastner, W. An Open-Source Wireless Sensor Node Platform with Active Node-Level Reliability for Monitoring Applications. Sensors 2021, 21, 7613. [Google Scholar] [CrossRef]
- Zeni, M.; Ondula, E.; Mbitiru, R.; Nyambura, A.; Samuel, L.; Fleming, K.; Weldemariam, K. Low-Power Low-cost Wireless Sensors for Real-time Plant Stress Detection. In Proceedings of the 2015 Annual Symposium on Computing for Development, London, UK, 1–2 December 2015; pp. 51–59. [Google Scholar] [CrossRef]
- Bluetooth Core Specification Version 5.4, Vol. 6, Part B: Link Layer Specification; Bluetooth SIG, Inc.: Kirkland, WA, USA, 2023; Available online: https://www.bluetooth.com/specifications/specs/core-specification-5-4/ (accessed on 18 July 2025).
- Bor, M.C.; Roedig, U.; Voigt, T.; Alonso, J.M. Do LoRa Low-Power Wide-Area Networks Scale? In Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM ’16, Malta, 13–17 November 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 59–67. [Google Scholar] [CrossRef]
- Nikodem, M.; Bawiec, M. Experimental Evaluation of Advertisement-Based Bluetooth Low Energy Communication. Sensors 2019, 20, 107. [Google Scholar] [CrossRef]
- Pal, P.; Sharma, R.P.; Tripathi, S.; Kumar, C.; Ramesh, D. 2.4 GHz RF Received Signal Strength Based Node Separation in WSN Monitoring Infrastructure for Millet and Rice Vegetation. IEEE Sens. J. 2021, 21, 18298–18306. [Google Scholar] [CrossRef]
- Olasupo, T.O.; Otero, C.E.; Olasupo, K.O.; Kostanic, I. Empirical path loss models for wireless sensor network deployments in short and tall natural grass environments. IEEE Trans. Antennas Propag. 2016, 64, 4012–4021. [Google Scholar] [CrossRef]
- Craven, S.; Subieta, J.; Sandholtz, C.; Langford, A.; Nelson, D.; Mazzeo, B.A. Long-Range Bluetooth Smart Stake System for Soil Sensing. In Proceedings of the 2023 Intermountain Engineering, Technology and Computing (IETC), Provo, UT, USA, 12–13 May 2023; pp. 102–107. [Google Scholar] [CrossRef]
- Craven, S.; Subieta, J.; Sandholtz, C.; Mazzeo, B.A. Long-Range Bluetooth Smart Stakes and High-Gain Receiver for High- Density Sensing in Precision Agriculture. In Proceedings of the 2024 International Conference on Precision Agriculture (ICPA), Manhattan, KS, USA, 21–24 July 2024; Available online: https://www.ispag.org/proceedings/?action=abstract&id=10753 (accessed on 18 July 2025).
- Yirenya-Tawiah, D.K.; Blackham, A.; Langford, A.; Mazzeo, B.; Chiang, S.H.W. Design and Measurement of a 24.5-mW, 33-mWh, 1.8-V-Output Solar Energy Harvester for Bluetooth Sensor Nodes. In Proceedings of the 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS), Fukuoka, Japan, 7–10 August 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Castiglione, P.; Campbell, G.S.; Parker, A.; Silva, A. A Complex Dielectric Sensor for Measurement of Water Content and Salinity in Porous Media. In Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Portici, Italy, 24–26 October 2019. [Google Scholar] [CrossRef]
- Marzetta, L.A. An Evaluation of the Three-Voltmeter Method for AC Power Measurement. IEEE Trans. Instrum. Meas. 1972, 21, 353–357. [Google Scholar] [CrossRef]
- Nordic Semiconductor. Tested by Nordic: Bluetooth Long Range. 2020. Available online: https://blog.nordicsemi.com/getconnected/tested-by-nordic-bluetooth-long-range (accessed on 16 July 2025).
- Kerry, R.; Oliver, M.A. Variograms of Ancillary Data to Aid Sampling for Soil Surveys. Precis. Agric. 2003, 4, 261–278. [Google Scholar] [CrossRef]
- Jacquez, G.M.; Goovaerts, P.; Kaufmann, A.; Rommel, R. SpaceStat 4.0 User Manual: Software for the Space-Time Analysis of Dynamic Complex Systems; BioMedware: Ann Arbor, MI, USA, 2014. [Google Scholar]
- Martini, M.E. Studies Evaluating Practices for Water Conservation: In-Situ Sensors for Determining Soil Field Capacity and Water Application Savings from Rebate-Driven Residential Landscape Transformations. Master’s Thesis, Brigham Young University, Provo, UT, USA, 2025. [Google Scholar]
- Hornbuckle, B.K.; Rowlandson, T.; Russell, E.; Kruger, A.; Sauer, T. Water Residing on Plants Alters the L-band Brightness of Senescing Corn. In Proceedings of the 2010 11th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, Washington, DC, USA, 1–4 March 2010; pp. 76–80. [Google Scholar] [CrossRef]
- Guo, X.-m.; Yang, X.-t.; Chen, M.-x.; Li, M.; Wang, Y.-a. A Model with Leaf Area Index and Apple Size Parameters for 2.4 GHz Radio Propagation in Apple Orchards. Precis. Agric. 2015, 16, 180–200. [Google Scholar] [CrossRef]
- Schmugge, T.; Jackson, T. A Dielectric Model of the Vegetation Effects on the Microwave Emission from Soils. IEEE Trans. Geosci. Remote Sens. 1992, 30, 757–760. [Google Scholar] [CrossRef]
- Friis, H. A Note on a Simple Transmission Formula. Proc. IRE 1946, 34, 254–256. [Google Scholar] [CrossRef]
- Giacomin, J.; Vasconcelos, F.; da Silva, E. Radiometric Measurement Of Corn Canopy Water Content With A 916 Mhz Wireless Sensor Network. In Proceedings of the XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, Portugal, 6–11 September 2009. [Google Scholar]
- Kerry, R.; Ingram, B.; Hammond, K.; Shumate, S.R.; Gunther, D.; Jensen, R.R.; Schill, S.; Hansen, N.C.; Hopkins, B.G. Spatial Analysis of Soil Moisture and Turfgrass Health to Determine Zones for Spatially Variable Irrigation Management. Agronomy 2023, 13, 1267. [Google Scholar] [CrossRef]
Item | Cost per Stake (USD) | Proportion of Total (%) |
---|---|---|
Nail Probes | 0.72 | 2.43 |
RF Shield | 1.30 | 4.40 |
Solar Panel | 1.60 | 5.43 |
Antenna | 1.82 | 6.18 |
Enclosure | 2.40 | 8.14 |
RF Power Measurement IC | 2.45 | 8.32 |
Supercapacitor | 2.72 | 9.24 |
MCU | 3.23 | 10.97 |
PCB and Components Except MCU and RF IC | 13.21 | 44.87 |
Total | 29.44 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Craven, S.; Bee, A.; Sanders, B.; Hammari, E.; Bond, C.; Kerry, R.; Hansen, N.; Mazzeo, B.A. Smart Bluetooth Stakes: Deployment of Soil Moisture Sensors with Rotating High-Gain Antenna Receiver on Center Pivot Irrigation Boom in a Commercial Wheat Field. Sensors 2025, 25, 5537. https://doi.org/10.3390/s25175537
Craven S, Bee A, Sanders B, Hammari E, Bond C, Kerry R, Hansen N, Mazzeo BA. Smart Bluetooth Stakes: Deployment of Soil Moisture Sensors with Rotating High-Gain Antenna Receiver on Center Pivot Irrigation Boom in a Commercial Wheat Field. Sensors. 2025; 25(17):5537. https://doi.org/10.3390/s25175537
Chicago/Turabian StyleCraven, Samuel, Austin Bee, Blake Sanders, Eliza Hammari, Cooper Bond, Ruth Kerry, Neil Hansen, and Brian A. Mazzeo. 2025. "Smart Bluetooth Stakes: Deployment of Soil Moisture Sensors with Rotating High-Gain Antenna Receiver on Center Pivot Irrigation Boom in a Commercial Wheat Field" Sensors 25, no. 17: 5537. https://doi.org/10.3390/s25175537
APA StyleCraven, S., Bee, A., Sanders, B., Hammari, E., Bond, C., Kerry, R., Hansen, N., & Mazzeo, B. A. (2025). Smart Bluetooth Stakes: Deployment of Soil Moisture Sensors with Rotating High-Gain Antenna Receiver on Center Pivot Irrigation Boom in a Commercial Wheat Field. Sensors, 25(17), 5537. https://doi.org/10.3390/s25175537