Machine Learning-Based Alexithymia Assessment Using Resting-State Default Mode Network Functional Connectivity
Abstract
1. Introduction
2. Methodology
2.1. Publicly Available Dataset Used in This Study
- History of psychiatric diseases that required inpatient treatment for over 2 weeks in the last 10 years;
- History of neurological disorders;
- Use of any chemotherapeutic or psychopharmacological medication;
- Positive drug history.
2.2. EEG Signal Recording Method in the Publicly Available Dataset
2.3. Preprocessing of EEG Signals in the Publicly Available Dataset
2.4. Source Localization of EEG Signals
2.5. Calculation of Functional Connectivity
2.6. Method for Assessing Alexithymia in Public Dataset
2.7. Dataset Construction
2.8. Cross-Validation
2.9. Dataset Preprocessing
2.10. Model Construction
2.11. Model Performance Metrics
2.12. Statistical Significance Evaluation of Machine Learning Model Performance
- Train the machine learning model using the training data.
- Evaluate the performance of the trained machine learning model on the test data.
- Randomly permute the objective variables in both the training and test data.
- Train the machine learning model using the permuted training data.
- Evaluate the performance of the machine learning model using the permuted test data.
- Repeat steps 3–5 an arbitrary number of times.
- Obtain the empirical null distribution by aggregating the accuracies calculated repeatedly in step 6.
- Evaluate the statistical significance of the performance calculated in step 2, based on the empirical null distribution obtained in step 7.
2.13. Interpreting Machine Learning Models with Permutation Feature Importance
- Train the machine learning model using the training data.
- Evaluate the performance of the trained machine learning model on the test data.
- Permute the data for one feature within the test dataset.
- Evaluate the performance of the trained machine learning model using the permuted data.
- Calculate the difference between the performance before permutation and the performance after permutation.
- Repeat steps 3–5 ten times.
- Average the differences in performance calculated in step 6.
- Perform steps 3–6 for each feature.
- Calculate PFI for each feature.
- Exclude from the analysis any features with a PFI of 0 or less, as these are considered not to contribute to the evaluation.
- Select the top % of features based on their PFI values.
- Count one point for the importance of the ROI from which the selected feature was derived.
- Repeat steps 3–4, varying at 10, 30, and 50.
3. Results and Discussions
3.1. Classification Model Performance
3.2. Permutation Tests in the Classification Model
3.3. Permutation Feature Importance in the Classification Model
3.3.1. Important ROIs in Classification at a 30% Threshold
3.3.2. Important Frequency Bands in Classification at a 30% Threshold
3.3.3. Important ROIs in Classification at a 70% Threshold
3.3.4. Important Frequency Bands in Classification at a 70% Threshold
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fusar-Poli, P.; Correll, C.U.; Arango, C.; Berk, M.; Patel, V.; Ioannidis, J.P.A. Preventive Psychiatry: A Blueprint for Improving the Mental Health of Young People. World Psychiatry 2021, 20, 200–221. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.; Solmi, M.; Wootton, R.E.; Vancampfort, D.; Schuch, F.B.; Hoare, E.; Gilbody, S.; Torous, J.; Teasdale, S.B.; Jackson, S.E.; et al. A Meta-Review of “Lifestyle Psychiatry”: The Role of Exercise, Smoking, Diet and Sleep in the Prevention and Treatment of Mental Disorders. World Psychiatry 2020, 19, 360–380. [Google Scholar] [CrossRef] [PubMed]
- Schwend, R.M. The Burden of Pediatric Musculoskeletal Diseases Worldwide. Orthop. Clin. N. Am. 2020, 51, 207–217. [Google Scholar] [CrossRef]
- GBD 2019 Mental Disorders Collaborators Global, Regional, and National Burden of 12 Mental Disorders in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. [CrossRef]
- Kirkbride, J.B.; Anglin, D.M.; Colman, I.; Dykxhoorn, J.; Jones, P.B.; Patalay, P.; Pitman, A.; Soneson, E.; Steare, T.; Wright, T.; et al. The Social Determinants of Mental Health and Disorder: Evidence, Prevention and Recommendations. World Psychiatry 2024, 23, 58–90. [Google Scholar] [CrossRef]
- Howes, O.D.; Thase, M.E.; Pillinger, T. Treatment Resistance in Psychiatry: State of the Art and New Directions. Mol. Psychiatry 2022, 27, 58–72. [Google Scholar] [CrossRef]
- Luminet, O.; Nielson, K.A. Alexithymia: Towards an Experimental, Processual Affective Science with Effective Interventions. Annu. Rev. Psychol. 2024, 76, 741–769. [Google Scholar] [CrossRef]
- Preece, D.A.; Mehta, A.; Becerra, R.; Chen, W.; Allan, A.; Robinson, K.; Boyes, M.; Hasking, P.; Gross, J.J. Why Is Alexithymia a Risk Factor for Affective Disorder Symptoms? The Role of Emotion Regulation. J. Affect. Disord. 2022, 296, 337–341. [Google Scholar] [CrossRef]
- Sheppes, G.; Suri, G.; Gross, J.J. Emotion Regulation and Psychopathology. Annu. Rev. Clin. Psychol. 2015, 11, 379–405. [Google Scholar] [CrossRef]
- Quinto, R.M.; De Vincenzo, F.; Graceffa, D.; Bonifati, C.; Innamorati, M.; Iani, L. The Relationship between Alexithymia and Mental Health Is Fully Mediated by Anxiety and Depression in Patients with Psoriasis. Int. J. Environ. Res. Public Health 2022, 19, 3649. [Google Scholar] [CrossRef]
- Pinna, F.; Manchia, M.; Paribello, P.; Carpiniello, B. The Impact of Alexithymia on Treatment Response in Psychiatric Disorders: A Systematic Review. Front. Psychiatry 2020, 11, 311. [Google Scholar] [CrossRef]
- Farhoumandi, N.; Mollaey, S.; Heysieattalab, S.; Zarean, M.; Eyvazpour, R. Facial Emotion Recognition Predicts Alexithymia Using Machine Learning. Comput. Intell. Neurosci. 2021, 2021, 2053795. [Google Scholar] [CrossRef] [PubMed]
- Rivera, M.J.; Teruel, M.A.; Maté, A.; Trujillo, J. Diagnosis and Prognosis of Mental Disorders by Means of EEG and Deep Learning: A Systematic Mapping Study. Artif. Intell. Rev. 2021, 55, 1209–1251. [Google Scholar] [CrossRef]
- de Bardeci, M.; Ip, C.T.; Olbrich, S. Deep Learning Applied to Electroencephalogram Data in Mental Disorders: A Systematic Review. Biol. Psychol. 2021, 162, 108117. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-H. Promising Neuroimaging Biomarkers in Depression. Psychiatry Investig. 2019, 16, 662–670. [Google Scholar] [CrossRef]
- Dev, A.; Roy, N.; Islam, M.K.; Biswas, C.; Ahmed, H.U.; Amin, M.A.; Sarker, F.; Vaidyanathan, R.; Mamun, K.A. Exploration of EEG-Based Depression Biomarkers Identification Techniques and Their Applications: A Systematic Review. IEEE Access 2022, 10, 16756–16781. [Google Scholar] [CrossRef]
- Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2019. Available online: https://christophm.github.io/interpretable-ml-book/ (accessed on 25 July 2025).
- Filippou, V.; Nicolaou, M.A.; Theodosiou, N.; Panayiotou, G.; Contantinou, E.; Theodorou, M.; Panteli, M. Multimodal Prediction of Alexithymia from Physiological and Audio Signals. In Proceedings of the 2023 11th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), Cambridge, MA, USA, 10 September 2023; IEEE: New York City, NY, USA, 2023; pp. 1–8. [Google Scholar]
- Filippou, V.; Theodosiou, N.; Nicolaou, M.; Constantinou, E.; Panayiotou, G.; Theodorou, M. A Wavelet-Based Approach for Multimodal Prediction of Alexithymia from Physiological Signals. In Proceedings of the Companion Publication of the 2022 International Conference on Multimodal Interaction, Bengaluru, India, 7 November 2022; Association for Computing Machinery: New York, NY, USA; pp. 177–184. [Google Scholar]
- Edwards, D.J.; Lowe, R. Associations between Mental Health, Interoception, Psychological Flexibility, and Self-as-Context, as Predictors for Alexithymia: A Deep Artificial Neural Network Approach. Front. Psychol. 2021, 12, 637802. [Google Scholar] [CrossRef]
- Callard, F.; Margulies, D.S. What We Talk about When We Talk about the Default Mode Network. Front. Hum. Neurosci. 2014, 8, 619. [Google Scholar] [CrossRef]
- Imperatori, C.; Della Marca, G.; Brunetti, R.; Carbone, G.A.; Massullo, C.; Valenti, E.M.; Amoroso, N.; Maestoso, G.; Contardi, A.; Farina, B. Default Mode Network Alterations in Alexithymia: An EEG Power Spectra and Connectivity Study. Sci. Rep. 2016, 6, 36653. [Google Scholar] [CrossRef]
- Ismail, L.E.; Karwowski, W. A Graph Theory-Based Modeling of Functional Brain Connectivity Based on EEG: A Systematic Review in the Context of Neuroergonomics. IEEE Access 2020, 8, 155103–155135. [Google Scholar] [CrossRef]
- Babayan, A.; Erbey, M.; Kumral, D.; Reinelt, J.D.; Reiter, A.M.F.; Röbbig, J.; Schaare, H.L.; Uhlig, M.; Anwander, A.; Bazin, P.-L.; et al. A Mind-Brain-Body Dataset of MRI, EEG, Cognition, Emotion, and Peripheral Physiology in Young and Old Adults. Sci. Data 2019, 6, 180308. [Google Scholar] [CrossRef]
- Toronto-Alexithymie-Skala-26. Available online: https://www.hogrefe.com/at/shop/toronto-alexithymie-skala-26.html (accessed on 27 February 2025).
- Bagby, R.M.; Parker, J.D.; Taylor, G.J. The Twenty-Item Toronto Alexithymia Scale--I. Item Selection and Cross-Validation of the Factor Structure. J. Psychosom. Res. 1994, 38, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Marqui, R.D.; Lehmann, D.; Koukkou, M.; Kochi, K.; Anderer, P.; Saletu, B.; Tanaka, H.; Hirata, K.; John, E.R.; Prichep, L.; et al. Assessing Interactions in the Brain with Exact Low-Resolution Electromagnetic Tomography. Philos. Transactions. Ser. A Math. Phys. Eng. Sci. 2011, 369, 3768–3784. [Google Scholar] [CrossRef] [PubMed]
- Jatoi, M.A.; Kamel, N.; Malik, A.S.; Faye, I. EEG Based Brain Source Localization Comparison of SLORETA and ELORETA. Australas. Phys. Eng. Sci. Med. 2014, 37, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.A.; Strohmeier, D.; Brodbeck, C.; Goj, R.; Jas, M.; Brooks, T.; Parkkonen, L.; et al. MEG and EEG Data Analysis with MNE-Python. Front. Neurosci. 2013, 7, 267. [Google Scholar] [CrossRef]
- Vinck, M.; Oostenveld, R.; van Wingerden, M.; Battaglia, F.; Pennartz, C.M.A. An Improved Index of Phase-Synchronization for Electrophysiological Data in the Presence of Volume-Conduction, Noise and Sample-Size Bias. Neuroimage 2011, 55, 1548–1565. [Google Scholar] [CrossRef]
- Li, A.; McCloy, D.; Larson, E.; Westner, B.; Kroner, A.; Gramfort, A.; Binns, T.S.; Orabe, M. Mne-Connectivity. 2024. Available online: https://github.com/mne-tools/mne-connectivity (accessed on 25 July 2025).
- Bagby, R.M.; Parker, J.D.A.; Taylor, G.J. Twenty-Five Years with the 20-Item Toronto Alexithymia Scale. J. Psychosom. Res. 2020, 131, 109940. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in PYthon. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Galli, S. Feature-Engine: A Python Package for Feature Engineering for Machine Learning. J. Open Source Softw. 2021, 6, 3642. [Google Scholar] [CrossRef]
- Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F. A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 2012, 42, 463–484. [Google Scholar] [CrossRef]
- Wallace, B.C.; Small, K.; Brodley, C.E.; Trikalinos, T.A. Class Imbalance, Redux. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining, Vancouver, BC, Canada, 11–14 December 2011; pp. 754–763. [Google Scholar]
- Vuttipittayamongkol, P.; Elyan, E.; Petrovski, A. On the Class Overlap Problem in Imbalanced Data Classification. Knowl. Based Syst. 2021, 212, 106631. [Google Scholar] [CrossRef]
- Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-Learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. J. Mach. Learn. Res. 2016, 18, 1–5. [Google Scholar]
- Fernandez, A.; Garcia, S.; Herrera, F.; Chawla, N.V. SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-Year Anniversary. J. Artif. Intell. Res. 2018, 61, 863–905. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, H.H. On the adaptive elastic-net with a diverging number of parameters. Ann. Stat. 2009, 37, 1733–1751. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.-P.; Hosseini, A.; Ahi, K. A Review on Machine Learning for EEG Signal Processing in Bioengineering. IEEE Rev. Biomed. Eng. 2021, 14, 204–218. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-Generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2623–2631. [Google Scholar]
- Hajian-Tilaki, K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Caspian J. Intern. Med. 2013, 4, 627–635. [Google Scholar]
- Ojala, M.; Garriga, G.C. Permutation Tests for Studying Classifier Performance. In Proceedings of the 2009 Ninth IEEE International Conference on Data Mining, Miami Beach, FL, USA, 6–9 December 2009; IEEE: New York, NY, USA, 2009; pp. 908–913. [Google Scholar]
- Combrisson, E.; Jerbi, K. Exceeding Chance Level by Chance: The Caveat of Theoretical Chance Levels in Brain Signal Classification and Statistical Assessment of Decoding Accuracy. J. Neurosci. Methods 2015, 250, 126–136. [Google Scholar] [CrossRef]
- Chmiel, J.; Wiażewicz-Wójtowicz, P.; Stępień-Słodkowska, M. Neural Correlates of Alexithymia Based on Electroencephalogram (EEG)—A Mechanistic Review. J. Clin. Med. 2025, 14, 1895. [Google Scholar] [CrossRef]
- Goerlich-Dobre, K.S.; Votinov, M.; Habel, U.; Pripfl, J.; Lamm, C. Neuroanatomical Profiles of Alexithymia Dimensions and Subtypes: Structural Correlates of Alexithymia Subtypes. Hum. Brain Mapp. 2015, 36, 3805–3818. [Google Scholar] [CrossRef]
- Matsumoto, A.; Ichikawa, Y.; Kanayama, N.; Ohira, H.; Iidaka, T. Gamma Band Activity and Its Synchronization Reflect the Dysfunctional Emotional Processing in Alexithymic Persons. Psychophysiology 2006, 43, 533–540. [Google Scholar] [CrossRef]
- Baenninger, A.; Palzes, V.A.; Roach, B.J.; Mathalon, D.H.; Ford, J.M.; Koenig, T. Abnormal Coupling between Default Mode Network and Delta and Beta Band Brain Electric Activity in Psychotic Patients. Brain Connect. 2017, 7, 34–44. [Google Scholar] [CrossRef]
- Aftanas, L.I.; Varlamov, A.A.; Reva, N.V.; Pavlov, S.V. Disruption of Early Event-Related Theta Synchronization of Human EEG in Alexithymics Viewing Affective Pictures. Neurosci. Lett. 2003, 340, 57–60. [Google Scholar] [CrossRef]
- Aftanas, L.I.; Varlamov, A.A. Effects of Alexithymia on the Activity of the Anterior and Posterior Areas of the Cortex of the Right Hemisphere in Positive and Negative Emotional Activation. Neurosci. Behav. Physiol. 2007, 37, 67–73. [Google Scholar] [CrossRef]
Index | MNI Coordinates | Anatomical Region | ||
---|---|---|---|---|
x | y | z | ||
1 | −30 | 40 | 25 | Left Frontal Lobe |
2 | 20 | 35 | 30 | Right Frontal Lobe |
3 | −45 | −15 | −25 | Left Temporal Lobe |
4 | 55 | −15 | −20 | Right Temporal Lobe |
5 | −5 | −5 | 35 | Left Posterior Cingulate Cortex |
6 | 5 | −10 | 30 | Right Posterior Cingulate Cortex |
7 | −5 | 30 | 20 | Left Anterior Cingulate Cortex |
8 | 5 | 30 | 20 | Right Anterior Cingulate Cortex |
9 | −5 | −55 | 25 | Left Hippocampus |
10 | 5 | −50 | 25 | Right Hippocampus |
11 | −45 | −50 | 40 | Left Parietal Lobe |
12 | 45 | −50 | 35 | Right Parietal Lobe |
Names of Frequency Bands | Frequency Bands (Hz) |
---|---|
Delta | 1–3 |
Theta | 4–7 |
Alpha | 8–12 |
Beta | 13–30 |
Gamma | 31–45 |
1–30 Hz 1 | 1–30 |
Models | Hyperparameters 1 |
---|---|
LR | C, l1_ratio |
LR UB | C, l1_ratio, n_estimators |
SVM C (linear) | C |
SVM C (linear) UB | C, n_estimators |
SVM C (RBF) | C, gamma |
RF C | n_estimators, max_depth, min_samples_split, min_samples_leaf, max_features |
Threshold 1 | Classification Model 2 | |||||
---|---|---|---|---|---|---|
LR | LR UB | SVM C (Linear) | SVM C (Linear) UB | SVM C (RBF) | RF C | |
20% | 0.64 | 0.70 | 0.63 | 0.67 | 0.60 | 0.59 |
30% | 0.60 | 0.65 | 0.54 | 0.64 | 0.61 | 0.65 |
40% | 0.48 | 0.52 | 0.44 | 0.54 | 0.48 | 0.49 |
50% | 0.53 | 0.54 | 0.52 | 0.55 | 0.49 | 0.54 |
60% | 0.61 | 0.54 | 0.58 | 0.57 | 0.42 | 0.50 |
70% | 0.56 | 0.62 | 0.66 | 0.66 | 0.56 | 0.43 |
80% | 0.56 | 0.49 | 0.52 | 0.55 | 0.50 | 0.55 |
Threshold 1 | Classification Model 2 | ||||||
---|---|---|---|---|---|---|---|
LR | LR UB | SVM C (Linear) | SVM C (Linear) UB | SVM C (RBF) | RF C | Sum 3 | |
20% | 1 | 2 | 0 | 1 | 1 | 0 | 5 |
30% | 1 | 3 | 1 | 3 | 1 | 1 | 10 |
40% | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
50% | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
60% | 2 | 0 | 1 | 1 | 0 | 0 | 4 |
70% | 0 | 1 | 3 | 3 | 1 | 0 | 8 |
80% | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Sum 3 | 4 | 6 | 5 | 9 | 3 | 3 | 30 |
ROI | Counts of Top n% of Feature (n = 10, 30, 50) 1 | ||
---|---|---|---|
10% | 30% | 50% | |
Left Frontal Lobe | 7 | 11 | 13 |
Right Frontal Lobe | 0 | 7 | 10 |
Left Temporal Lobe | 0 | 4 | 7 |
Right Temporal Lobe | 3 | 7 | 8 |
Left Posterior Cingulate Cortex | 3 | 6 | 7 |
Right Posterior Cingulate Cortex | 5 | 8 | 8 |
Left Anterior Cingulate Cortex | 3 | 9 | 9 |
Right Anterior Cingulate Cortex | 1 | 8 | 9 |
Left Hippocampus | 6 | 10 | 11 |
Right Hippocampus | 3 | 6 | 7 |
Left Parietal Lobe | 5 | 11 | 13 |
Right Parietal Lobe | 2 | 11 | 14 |
Frequency Band | Counts of Top n% of Feature (n = 10, 30, 50) 1 | ||
---|---|---|---|
10% | 30% | 50% | |
delta | 8 | 16 | 20 |
theta | 4 | 10 | 10 |
alpha | 8 | 18 | 20 |
beta | 6 | 16 | 18 |
gamma | 8 | 24 | 32 |
1–30 Hz 2 | 4 | 14 | 16 |
ROI | Counts of Top n% of Feature (n = 10, 30, 50) 1 | ||
---|---|---|---|
10% | 30% | 50% | |
Left Frontal Lobe | 4 | 12 | 14 |
Right Frontal Lobe | 3 | 6 | 6 |
Left Temporal Lobe | 4 | 7 | 8 |
Right Temporal Lobe | 3 | 5 | 9 |
Left Posterior Cingulate Cortex | 3 | 9 | 9 |
Right Posterior Cingulate Cortex | 5 | 9 | 10 |
Left Anterior Cingulate Cortex | 3 | 6 | 8 |
Right Anterior Cingulate Cortex | 1 | 7 | 11 |
Left Hippocampus | 3 | 12 | 12 |
Right Hippocampus | 2 | 4 | 6 |
Left Parietal Lobe | 1 | 2 | 3 |
Right Parietal Lobe | 2 | 5 | 6 |
Frequency Band | Counts of Top n% of Feature (n = 10, 30, 50) 1 | ||
---|---|---|---|
10% | 30% | 50% | |
delta | 8 | 12 | 12 |
theta | 8 | 18 | 22 |
alpha | 4 | 18 | 28 |
beta | 4 | 14 | 16 |
gamma | 6 | 14 | 16 |
1–30 Hz 2 | 4 | 8 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, K.; Sugaya, M. Machine Learning-Based Alexithymia Assessment Using Resting-State Default Mode Network Functional Connectivity. Sensors 2025, 25, 5515. https://doi.org/10.3390/s25175515
Suzuki K, Sugaya M. Machine Learning-Based Alexithymia Assessment Using Resting-State Default Mode Network Functional Connectivity. Sensors. 2025; 25(17):5515. https://doi.org/10.3390/s25175515
Chicago/Turabian StyleSuzuki, Kei, and Midori Sugaya. 2025. "Machine Learning-Based Alexithymia Assessment Using Resting-State Default Mode Network Functional Connectivity" Sensors 25, no. 17: 5515. https://doi.org/10.3390/s25175515
APA StyleSuzuki, K., & Sugaya, M. (2025). Machine Learning-Based Alexithymia Assessment Using Resting-State Default Mode Network Functional Connectivity. Sensors, 25(17), 5515. https://doi.org/10.3390/s25175515