Ka-Band Reflectarray with Cylindrical Dielectric Unit Cells: Optimized Additive Manufacturing and High-Permittivity Material Characterization
Abstract
1. Introduction
2. Unit Cell Characterization
3D Printing Parameters Assessment and Material Experimental Characterization
3. Reflectarray Antenna Design and Experimental Validation
3.1. UC Performance
3.2. RA Design and Experimental Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Encinar, J.A. Reflectarray Antennas; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Nayeri, P.; Yang, F.; Elsherbeni, A.Z. Reflectarray Antennas: Theory, Designs and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Pozar, D.; Targonski, S.; Syrigos, H. Design of millimeter wave microstrip reflectarrays. IEEE Trans. Antennas Propag. 1997, 45, 287–296. [Google Scholar] [CrossRef]
- Encinar, J. Design of two-layer printed reflectarrays using patches of variable size. IEEE Trans. Antennas Propag. 2001, 49, 1403–1410. [Google Scholar] [CrossRef]
- Kocia, C.; Hum, S.V. Design of an Optically Transparent Reflectarray for Solar Applications Using Indium Tin Oxide. IEEE Trans. Antennas Propag. 2016, 64, 2884–2893. [Google Scholar] [CrossRef]
- An, W.; Xu, S.; Yang, F. A Metal-Only Reflectarray Antenna Using Slot-Type Elements. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1553–1556. [Google Scholar] [CrossRef]
- Deng, R.; Yang, F.; Xu, S.; Li, M. A Low-Cost Metal-Only Reflectarray Using Modified Slot-Type Phoenix Element with 360° Phase Coverage. IEEE Trans. Antennas Propag. 2016, 64, 1556–1560. [Google Scholar] [CrossRef]
- Carluccio, G.; Mazzinghi, A.; Freni, A. Design and Manufacture of Cosecant-Squared Complementary Reflectarrays for Low-Cost Applications. IEEE Trans. Antennas Propag. 2017, 65, 5220–5227. [Google Scholar] [CrossRef]
- He, Y.; Gao, Z.; Jia, D.; Zhang, W.; Du, B.; Chen, Z.N. Dielectric Metamaterial-Based Impedance-Matched Elements for Broadband Reflectarray. IEEE Trans. Antennas Propag. 2017, 65, 7019–7028. [Google Scholar] [CrossRef]
- Da, W.M.; Li, B.; Zhou, Y.; Guo, D.L.; Liu, Y.; Wei, F.; Lv, X. Design and measurement of a 220 GHz wideband 3-D printed dielectric reflectarray. IIEEE Antennas Wirel. Propag. Lett. 2018, 17, 2094–2098. [Google Scholar]
- Mei, P.; Zhang, S.; Pedersen, G.F. A Wideband 3-D Printed Reflectarray Antenna With Mechanically Reconfigurable Polarization. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1798–1802. [Google Scholar] [CrossRef]
- Singh, A.; Andrello, M.; Einarsson, E.; Jornet, N.T.J.M. Design and Operation of a Smart Graphene–Metal Hybrid Reflectarray at THz Frequencies. In Proceedings of the 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Chen, B.; Wu, B.; Zu, H.R.; Hou, J.Q.; Su, T. Experimental demonstration of high optically transparent reflectarrays using fine metal line structure. IEEE Trans. Antennas Propag. 2022, 70, 10504–10511. [Google Scholar] [CrossRef]
- Massaccesi, A.; Bertana, V.; Beccaria, M.; Marasso, S.L.; Cocuzza, M.; Dassano, G.; Pirinoli, P. Three-Dimensional-Printed Wideband Perforated Dielectric-Only Reflectarray in Ka-Band. IEEE Trans. Antennas Propag. 2023, 71, 7848–7859. [Google Scholar] [CrossRef]
- Jiang, P.; Jiang, W.; Hu, W.; Gong, S. A Mesh-Type Shared-Aperture Dual-Band Circularly Polarized Transmit- Reflect-Array Antenna. IEEE Trans. Antennas Propag. 2023, 71, 1590–1601. [Google Scholar] [CrossRef]
- Massaccesi, A.; Beccaria, M.; Bertana, V.; Marasso, S.L.; Cocuzza, M.; Dassano, G.; Pirinoli, P. 3D-printed wideband reflectarray antennas with mechanical beam-steering. Int. J. Microw. Wirel. Technol. 2023, 16, 21–29. [Google Scholar] [CrossRef]
- Sofokleous, P.; Paz, E.; Herraiz-Martínez, F.J. Design and Manufacturing of Dielectric Resonators via 3D Printing of Composite Polymer/Ceramic Filaments. Polymers 2024, 16, 2589. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Izquierdo, B.S.; Gao, S.; Chen, Z. Analysis of 3D Printed Dielectric Resonator Antenna Arrays for Millimeter-Wave 5G Applications. Appl. Sci. 2024, 14, 9886. [Google Scholar] [CrossRef]
- Hehenberger, S.P.; Caizzone, S.; Yarovoy, A.G. Additive Manufacturing of Linear Continuous Permittivity Profiles and Their Application to Cylindrical Dielectric Resonator Antennas. IEEE Open J. Antennas Propag. 2023, 4, 373–382. [Google Scholar] [CrossRef]
- Marrocco, V.; Basile, V.; Fassi, I.; Grande, M.; Laneve, D.; Prudenzano, F.; D’Orazio, A. Dielectric Resonant Antennas via Additive Manufacturing for 5G Communications. In Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 174–180. [Google Scholar] [CrossRef]
- van Hoang, T.Q.; Bertrand, M.; Vandelle, E.; Loiseaux, B. Low-Profile Highly Directive 2D-Beam-Steering Antenna in Ka-band with 3D-printed All-dielectric Sub-wavelength Deflectors. In Proceedings of the 52nd European Microwave Conference (EuMC), Milan, Italy, 27–29 September 2022; pp. 852–855. [Google Scholar] [CrossRef]
- Malfajani, R.S.; Damansabz, R.; Bodkhe, S.; Therriault, D.; Laurin, J.-J.; Sharawi, M.S. 3-D-Printed Encapsulated Dielectric Resonator Antennas With Large Operation Frequency Ratio for Future Wireless Communications. IEEE Open J. Antennas Propag. 2024, 5, 1351–1364. [Google Scholar] [CrossRef]
- Nadeem, A.; Chatzichristodoulou, D.; Shoaib, N.; Vryonides, P.; Nikolaou, S. Gain Enhancement of a 5G mmWave 2 × 2 Antenna Array Using a 3D Printed Hemispherical Lens. In Proceedings of the 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI), Portland, OR, USA, 23–28 July 2023; pp. 1697–1698. [Google Scholar] [CrossRef]
- Zhang, S. Three-dimensional printed millimetre wave dielectric resonator reflectarray. IET Microw. Antennas Propag. 2017, 11, 2005–2009. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Leung, K.W. Millimeter-Wave Substrate-Based Dielectric Reflectarray. IEEE Antennas Wireless Propag. Lett. 2018, 17, 2329–2333. [Google Scholar] [CrossRef]
- Cui, Y.; Bahr, R.; Nauroze, S.A.; Cheng, T.; Almoneef, T.S.; Tentzeris, M.M. 3D Printed “Kirigami”-Inspired Deployable Bi-Focal Beam-Scanning Dielectric Reflectarray Antenna for mm-Wave Applications. IEEE Trans. Antennas Propag. 2022, 70, 7683–7690. [Google Scholar] [CrossRef]
- Chekkar, W.; Lanteri, J.; Malvaux, T.; Sourice, J.; Lizzi, L.; Migliaccio, C.; Ferrero, F. A 3D-Printed Bi-Material Bragg-Based Reflectarray Antenna. Sensors 2024, 24, 6512. [Google Scholar] [CrossRef]
- Tiwari, S.; Singh, A.K.; Dubey, A. Additively Manufactured Dielectric Reflectarray Antenna for Millimeter-Wave Satellite Communication. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 1276–1280. [Google Scholar] [CrossRef]
- Available online: https://zetamix.fr/produit/filament-epsilon/ (accessed on 2 March 2025).
- Available online: https://zetamix.fr/wp-content/uploads/2024/09/guideline-epsilon.pdf (accessed on 15 February 2025).
- Available online: https://www.raise3d.com/pro3-series/ (accessed on 15 February 2025).
- Lumia, M.; Addamo, G.; Virone, G.; Peverini, O.A.; Paonessa, F.; Rabitsch, J.; Mele, M.; Calignano, F.; Manfredi, D.; Bouzekri, O. RF Characterization of 3D-Printed Dielectric Materials. In Proceedings of the 2023 IEEE Conference on Antenna Measurements and Applications (CAMA), Genoa, Italy, 15–17 November 2023; pp. 808–813. [Google Scholar] [CrossRef]
- Beccaria, M.; Addamo, G.; Orefice, M.; Peverini, O.; Manfredi, D.; Calignano, F.; Virone, G.; Pirinoli, P. Enhanced Efficiency and Reduced Side Lobe Level Convex Conformal Reflectarray. Appl. Sci. 2021, 11, 9893. [Google Scholar] [CrossRef]
- Available online: https://lace.polito.it/ (accessed on 23 August 2025).
Parameter | Recommended Values [30] | Used Values |
---|---|---|
Printing temperature | 290 °C | 285 °C |
Plate temperature | 110 °C | 110 °C |
Nozzle size | 0.4 mm, 0.6 mm | 0.4 mm |
Layer thickness | 0.2 mm | 0.2 mm |
First layer printing speed | 2.5 mm/s | 7 mm/s |
General printing speed | 15 mm/s | 17 mm/s |
Cooling | 0% (remove fan) | 0% (fan disabled) |
Infill density | 100% (Gyroid pattern) | 90% (Gyroid pattern) |
Flow rate | 100% | 100% |
Retraction speed | - | 40 mm/s |
Sample | Width (mm) | Height (mm) | Length (mm) |
---|---|---|---|
1 | 8.64 | 4.24 | 3.50 |
2 | 8.62 | 4.26 | 3.52 |
3 | 8.58 | 4.30 | 3.52 |
Sample | Width (mm) | Height (mm) | Length (mm) |
---|---|---|---|
1 | 8.61 | 4.28 | 3.48 |
2 | 8.62 | 4.29 | 3.48 |
3 | 8.61 | 4.28 | 3.50 |
Ref. | Freq. [GHz] | Area () | Thickness () | Gain [dBi] | Ap. Eff. [%] | 1-dB BW [%] | |
---|---|---|---|---|---|---|---|
[24] | 30 | 4.4 | 140 | 28 | 31 | 12 | |
[25] | 35 | 10.2 | 153.86 | 17.7 | 23 | ||
[26] | 30 | 2.8 | 129.3 | 22.8 | 17.5 | ||
[27] | 27 | 7.5/2.2 | 27.22 | 35 | 3.33 | ||
[28] | 28 | 4 | 25.4 | 0.56 | 23.8 | 75 | 16.7 |
This Work | 30 | 5.9 | 207.4 | 0.44 | 31.2 | 50.8 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beccaria, M.; Massaccesi, A.; Lumia, M.; Addamo, G.; Freni, A.; Pirinoli, P. Ka-Band Reflectarray with Cylindrical Dielectric Unit Cells: Optimized Additive Manufacturing and High-Permittivity Material Characterization. Sensors 2025, 25, 5480. https://doi.org/10.3390/s25175480
Beccaria M, Massaccesi A, Lumia M, Addamo G, Freni A, Pirinoli P. Ka-Band Reflectarray with Cylindrical Dielectric Unit Cells: Optimized Additive Manufacturing and High-Permittivity Material Characterization. Sensors. 2025; 25(17):5480. https://doi.org/10.3390/s25175480
Chicago/Turabian StyleBeccaria, Michele, Andrea Massaccesi, Mauro Lumia, Giuseppe Addamo, Angelo Freni, and Paola Pirinoli. 2025. "Ka-Band Reflectarray with Cylindrical Dielectric Unit Cells: Optimized Additive Manufacturing and High-Permittivity Material Characterization" Sensors 25, no. 17: 5480. https://doi.org/10.3390/s25175480
APA StyleBeccaria, M., Massaccesi, A., Lumia, M., Addamo, G., Freni, A., & Pirinoli, P. (2025). Ka-Band Reflectarray with Cylindrical Dielectric Unit Cells: Optimized Additive Manufacturing and High-Permittivity Material Characterization. Sensors, 25(17), 5480. https://doi.org/10.3390/s25175480