Sensor-Agnostic, LSTM-Based Human Motion Prediction Using sEMG Data
Abstract
1. Introduction
1.1. Hardware Dependence of EMG
1.2. Motion Prediction and Classification Using EMG
1.2.1. Classification and Threshold-Based Algorithms
1.2.2. Deep Learning Methods
1.2.3. Long Short-Term Memory Networks
1.3. EMG Hardware Dependence of Deep Learning and Regression
2. Methods
2.1. sEMG Hardware
2.2. Experiment
2.3. Deep Learning Network Design
2.4. Computing Hardware
3. Results
- Rolling window size: This is the size of the input rolling window, which corresponds to how much information is given per prediction about the current and past states of the target trajectory and the surrounding sEMG activation data (varied between 10 and 100 timesteps).
- Intersample distance: This is the temporal separation between the most up-to-date rolling window and the point for which the network is attempting to make a prediction. A large intersample distance means the network is attempting to make a prediction further into the future (varied between 10 and 300 timesteps).
- Layer size: This is the number of hidden units in the bi-LSTM layer of the network.
4. Discussion
4.1. Benefits of Sensor-Agnostic sEMG Prediction
Ramifications of the Results
4.2. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
(s)EMG | (Surface) electromyography |
ML | Machine learning |
DoF | Degree of freedom |
(bi-)LSTM | (Bidirectional) long short-term memory |
KNN | K-nearest neighbor |
Appendix A. Motion Diagrams
References
- De Luca, C.J. The Use of Surface Electromyography in Biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [Google Scholar] [CrossRef]
- Waris, A.; Kamavuako, E.N. Effect of threshold values on the combination of EMG time domain features: Surface versus intramuscular EMG. Biomed. Signal Process. Control 2018, 45, 267–273. [Google Scholar] [CrossRef]
- Guerreiro, J.; Lourenço, A.; Silva, H.; Fred, A. Performance Comparison of Low-cost Hardware Platforms Targeting Physiological Computing Applications. Procedia Technol. 2014, 17, 399–406. [Google Scholar] [CrossRef]
- Balestra, C. Analysis and Comparison of Three Different EMG Muscle Training Systems. Ph.D. Thesis, Politecnico di Milano, Milan, Italy, 2018. [Google Scholar]
- Pizzolato, S.; Tagliapietra, L.; Cognolato, M.; Reggiani, M.; Müller, H.; Atzori, M. Comparison of six electromyography acquisition setups on hand movement classification tasks. PLoS ONE 2017, 12, e0186132. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.H.; Siu, H.C.; Newman, D.J.; Roche, E.T.; Petersen, L.G. Utilization of Classification Learning Algorithms for Upper-Body Non-Cyclic Motion Prediction. Sensors 2025, 25, 1297. [Google Scholar] [CrossRef] [PubMed]
- Siu, H.; Shah, J.; Stirling, L. Classification of Anticipatory Signals for Grasp and Release from Surface Electromyography. Sensors 2016, 16, 1782. [Google Scholar] [CrossRef] [PubMed]
- Yeon, S.H.; Shu, T.; Song, H.; Hsieh, T.H.; Qiao, J.; Rogers, E.A.; Gutierrez-Arango, S.; Israel, E.; Freed, L.E.; Herr, H.M. Acquisition of surface EMG using flexible and low-profile electrodes for lower extremity neuroprosthetic control. IEEE Trans. Med. Robot. Bionics 2021, 3, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Tacca, N.; Dunlap, C.; Donegan, S.P.; Hardin, J.O.; Meyers, E.; Darrow, M.J.; Colachis Iv, S.; Gillman, A.; Friedenberg, D.A. Wearable high-density EMG sleeve for complex hand gesture classification and continuous joint angle estimation. Sci. Rep. 2024, 14, 18564. [Google Scholar] [CrossRef] [PubMed]
- Siu, H.C.; Sloboda, J.; McKindles, R.J.; Stirling, L.A. Ankle torque estimation during locomotion from surface electromyography and accelerometry. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020; pp. 80–87. [Google Scholar] [CrossRef]
- Siu, H.C.; Stirling, L. Collaborative Fluency and Task Performance with a Learning Upper Extremity Exoskeleton. In Proceedings of the NEC HFES Study Research Conference, Cambridge, MA, USA, 20 April 2018. [Google Scholar]
- Sloboda, J.; Stegall, P.; McKindles, R.J.; Stirling, L.; Siu, H.C. Utility of inter-subject transfer learning for wearable-sensor-based joint torque prediction models. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual, 1–5 November 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Gonzalez, S.; Stegall, P.; Edwards, H.; Stirling, L.; Siu, H.C. Ablation analysis to select wearable sensors for classifying standing, walking, and running. Sensors 2020, 21, 194. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.H.; Siu, H.C.; Apostolides, L.; Kim, S.; Petersen, L.G. Improving tandem fluency through utilization of deep learning to predict human motion in exoskeleton. Actuators 2025, 14, 260. [Google Scholar] [CrossRef]
- Reuther, A.; Kepner, J.; Byun, C.; Samsi, S.; Arcand, W.; Bestor, D.; Bergeron, B.; Gadepally, V.; Houle, M.; Hubbell, M.; et al. Interactive supercomputing on 40,000 cores for machine learning and data analysis. In Proceedings of the 2018 IEEE High Performance extreme Computing Conference (HPEC), Waltham, MA, USA, 25–27 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
Delsys Trigno (Avanti Sensors) | Advancer Technologies Myoware 2.0 | |
---|---|---|
Communication | Wireless | Wired |
Compound functionality | sEMG and IMU | sEMG only |
DAQ | Proprietary | Arduino and Teensy ecosystem |
Bandwidth | 10∼850 Hz | 20∼500 Hz |
Innate buffering | ∼32 ms per window of data | Real-time (no buffer) |
Electrode configuration | Monopolar with reference node | Bipolar |
Preprocessing | Instrument amplifier | Instrument amplifier and bandpass filter |
Cost | ∼USD 5000/channel | ≤USD 200/channel |
Value | Mean Error [rad] | SE | p | N |
---|---|---|---|---|
Comparison for window size | ||||
10 | 0.0029 | 0.0009 | 0.0014 | 70 |
50 | 0.0003 | 0.0006 | 0.097 | 64 |
100 | 0.0046 | 0.0017 | 0.0092 | 34 |
Comparison for intersample distance | ||||
10 | 0.0015 | 0.0006 | 0.0096 | 54 |
50 | 0.0028 | 0.001 | 0.0102 | 38 |
100 | 0.005 | 0.007 | 0.044 | 38 |
300 | 0.0044 | 0.002 | 0.053 | 38 |
Comparison for layer size | ||||
10 | 0.0069 | 0.0019 | 0.018 | 20 |
50 | 0.0029 | 0.0011 | 0.0069 | 65 |
100 | 0.0002 | 0.0007 | 0.075 | 65 |
300 | 0.026 | 0.011 | 0.028 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koo, B.H.; Siu, H.C.; Petersen, L.G. Sensor-Agnostic, LSTM-Based Human Motion Prediction Using sEMG Data. Sensors 2025, 25, 5474. https://doi.org/10.3390/s25175474
Koo BH, Siu HC, Petersen LG. Sensor-Agnostic, LSTM-Based Human Motion Prediction Using sEMG Data. Sensors. 2025; 25(17):5474. https://doi.org/10.3390/s25175474
Chicago/Turabian StyleKoo, Bon Ho, Ho Chit Siu, and Lonnie G. Petersen. 2025. "Sensor-Agnostic, LSTM-Based Human Motion Prediction Using sEMG Data" Sensors 25, no. 17: 5474. https://doi.org/10.3390/s25175474
APA StyleKoo, B. H., Siu, H. C., & Petersen, L. G. (2025). Sensor-Agnostic, LSTM-Based Human Motion Prediction Using sEMG Data. Sensors, 25(17), 5474. https://doi.org/10.3390/s25175474