Short-Packet Communications in Multi-Antenna Cooperative NOMA Networks with Hardware Impairments
Abstract
1. Introduction
1.1. Background
1.2. Related Work
1.3. Contributions
- An analytical framework is proposed for modeling downlink multi-antenna cooperative NOMA networks with hardware impairments in a Nakagami-m fading environment, where short-packet transmission is adopted to lower communication delays. In particular, the direct link from the source to the near user and the relay link from the near user to the far user are combined by selective combining (SC) to enhance spectrum efficiency.
- The maximum ratio transmission (MRT) scheme is employed to enhance the channel difference between the near and far users. Closed-form expressions for the average BLER and effective throughput are derived. Furthermore, the optimization of the blocklength is performed to maximize the effective throughput, subject to the constraints imposed on transmission latency and reliability.
- Theoretical results are validated through extensive Monte Carlo simulations and show that the proposed scheme, utilizing a two-antenna source, achieves a significantly higher effective throughput. Specifically, at a transmit signal-to-noise ratio (SNR) of 33 dB, the proposed scheme attains a throughput improvement of up to 240% compared to the existing NOMA benchmark. Moreover, as the number of transmit antennas increases from 2 to 8, the performance advantage of the proposed scheme becomes particularly pronounced.
1.4. Organization
2. System Model
3. Performance Analysis
3.1. Average BLER
3.2. Effective Throughput
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Al-Dweik, A.; Alsusa, E.; Dobre, O.A.; Hamila, R. Multi-Symbol Rate NOMA for Improving Connectivity in 6G Communications Networks. IEEE Commun. Mag. 2024, 62, 118–123. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Han, C.; Hao, W.; Zeng, M.; Zhu, Z.; Wang, H. Reliability and Security of CR-STAR-RIS-NOMA-Assisted IoT Networks. IEEE Internet Things J. 2024, 11, 27969–27980. [Google Scholar] [CrossRef]
- Mu, X.; Wang, Z.; Liu, Y. NOMA for Integrating Sensing and Communications Toward 6G: A Multiple Access Perspective. IEEE Wirel. Commun. 2024, 31, 316–323. [Google Scholar] [CrossRef]
- Zhong, T.; Wang, Y.; Wang, J.; Xia, X.-G.; Gao, X. Minimum BLER NOMA Design With Finite Blocklength. IEEE Trans. Wirel. Commun. 2024, 23, 13499–13514. [Google Scholar] [CrossRef]
- Li, X.; Zheng, Y.; Zhang, J.; Dang, S.; Nallanathan, A.; Mumtaz, S. Finite SNR Diversity-Multiplexing Trade-Off in Hybrid ABCom/RCom-Assisted NOMA Networks. IEEE Trans. Mob. Comput. 2024, 23, 9108–9119. [Google Scholar] [CrossRef]
- Xiang, Z.; Huang, L.; Meng, J.; Xia, C.; Liu, H.; Luo, K.; Xie, M. Cognitive Radio-Inspired NOMA in Short-Packet Communications. IEEE Trans. Veh. Technol. 2023, 72, 14189–14199. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Zeng, M.; Liu, Y.; Dang, S.; Tsiftsis, T.A.; Dobre, O.A. Physical-Layer Authentication for Ambient Backscatter Aided NOMA Symbiotic Systems. IEEE Trans. Commun. 2023, 71, 2288–2303. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, H. Outage Performance Analysis and Optimization of Two-User Downlink NOMA Systems with Imperfect SIC and Improper Signaling. IEEE Trans. Wirel. Commun. 2024, 23, 11649–11661. [Google Scholar] [CrossRef]
- Liu, Y.; Yi, W.; Ding, Z.; Liu, X.; Dobre, O.A.; Al-Dhahir, N. Developing NOMA to Next Generation Multiple Access: Future Vision and Research Opportunities. IEEE Wirel. Commun. 2022, 29, 120–127. [Google Scholar] [CrossRef]
- Li, X.; Liu, M.; Dang, S.; Luong, N.; Yuen, C.; Nallanathan, A.; Niyato, D. Covert Communications with Enhanced Physical Layer Security in RIS-Assisted Cooperative Networks. IEEE Trans. Wirel. Commun. 2025, 24, 5605–5619. [Google Scholar] [CrossRef]
- Zhou, Y.; Wong, V.W.S.; Schober, R. Stable Throughput Regions of Opportunistic NOMA and Cooperative NOMA With Full-Duplex Relaying. IEEE Trans. Wirel. Commun. 2018, 17, 5059–5075. [Google Scholar] [CrossRef]
- Do, N.T.; Costa, D.B.D.; Duong, T.Q.; An, B. A BNBF User Selection Scheme for NOMA-Based Cooperative Relaying Systems with SWIPT. IEEE Commun. Lett. 2017, 21, 664–667. [Google Scholar] [CrossRef]
- Oleiwi, H.W.; Al-Raweshidy, H. SWIPT-Pairing Mechanism for Channel-Aware Cooperative H-NOMA in 6G Terahertz Communications. Sensors 2022, 22, 6200. [Google Scholar] [CrossRef] [PubMed]
- Oleiwi, H.W.; Al-Raweshidy, H. Cooperative Hybrid-NOMA / Dynamic SWIPT- Pairing Mechanism for 6G THz Communications. In Proceedings of the IEEE 5th Global Power, Energy, and Communication Conference (GPECOM), Cappadocia, Turkey, 14–16 June 2023; pp. 524–529. [Google Scholar]
- Lv, L.; Ye, Q.; Ding, Z.; Li, Z.; Al-Dhahir, N.; Chen, J. Multi-Antenna Two-Way Relay Based Cooperative NOMA. IEEE Trans. Wirel. Commun. 2020, 19, 6486–6503. [Google Scholar] [CrossRef]
- Mobini, Z.; Mohammadi, M.; Tsiftsis, T.A.; Ding, Z.; Tellambura, C. New Antenna Selection Schemes for Full-Duplex Cooperative MIMO-NOMA Systems. IEEE Trans. Commun. 2022, 70, 4343–4358. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, Y.; Yang, Z.; Xu, P.; Ding, Z. Energy Efficiency Optimization in Full-Duplex User-Aided Cooperative SWIPT NOMA Systems. IEEE Trans. Commun. 2019, 67, 5753–5767. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, M.; Zhang, Q.; Li, Q.; Qin, J. Cooperative Non-Orthogonal Multiple Access in Multiple-Input-Multiple-Output Channels. IEEE Trans. Wirel. Commun. 2018, 17, 2068–2079. [Google Scholar] [CrossRef]
- Miandoab, F.T.; Fazel, M.S.; Mahdavi, M. Outage Analysis of Multiuser MIMO-NOMA Transmissions in Uplink Full-Duplex Cooperative System. IEEE Wirel. Commun. Lett. 2022, 11, 2076–2079. [Google Scholar] [CrossRef]
- Ma, R.; Yang, W.; Shi, H.; Lu, X.; Liu, J. Covert communication with a spectrum sharing relay in the finite blocklength regime. China Commun. 2023, 20, 195–211. [Google Scholar] [CrossRef]
- Xiang, Z.; Yang, W.; Cai, Y.; Ding, Z.; Song, Y.; Zou, Y. NOMA-Assisted Secure Short-Packet Communications in IoT. IEEE Wirel. Commun. 2020, 27, 8–15. [Google Scholar] [CrossRef]
- Polyanskiy, Y.; Poor, H.V.; Verdu, S. Channel Coding Rate in the Finite Blocklength Regime. IEEE Trans. Inf. Theory 2010, 56, 2307–2359. [Google Scholar] [CrossRef]
- Lai, X.; Zhang, Q.; Qin, J. Cooperative NOMA Short-Packet Communications in Flat Rayleigh Fading Channels. IEEE Trans. Veh. Technol. 2019, 68, 6182–6186. [Google Scholar] [CrossRef]
- Yuan, L.; Du, Q.; Fang, F. Performance Analysis of Full-Duplex Cooperative NOMA Short-Packet Communications. IEEE Trans. Veh. Technol. 2022, 71, 13409–13414. [Google Scholar] [CrossRef]
- Vu, T.-H.; Nguyen, T.-V.; Nguyen, T.-T.; Bao, V.N.Q.; Kim, S. Short-Packet Communications in NOMA-CDRT IoT Networks with Cochannel Interference and Imperfect SIC. IEEE Trans. Veh. Technol. 2022, 71, 5552–5557. [Google Scholar] [CrossRef]
- Guo, C.; Guo, C.; Zhang, S.; Ding, Z. Adaptive Relaying Protocol Design and Analysis for Short-Packet Cooperative NOMA. IEEE Trans. Veh. Technol. 2023, 72, 2689–2694. [Google Scholar] [CrossRef]
- Vu, T.-H.; Nguyen, T.-T.; Pham, Q.-V.; da Costa, D.B.; Kim, S. A Novel Partial Decode-and-Amplify NOMA-Inspired Relaying Protocol for Uplink Short-Packet Communications. IEEE Wirel. Commun. Lett. 2023, 12, 1244–1248. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Vu, T.-H.; Tu, L.-T.; Duy, T.T.; Nguyen, Q.-S.; da Costa, D.B. A Low-Complexity Relaying Protocol for Cooperative Short-Packet NOMA-Based Spectrum Sharing Systems. IEEE Trans. Veh. Technol. 2024, 73, 9044–9049. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Vu, T.-H.; da Costa, D.B.; Nguyen, P.X.; Ta, H.Q. Short-Packet Communications in IoT-Aided Cellular Cooperative Networks with Non-Orthogonal Multiple Access. IEEE Trans. Veh. Technol. 2023, 72, 1296–1301. [Google Scholar] [CrossRef]
- Chu, T.M.C.; Zepernick, H.-J.; Duong, T.Q. Short-Packet Cooperative NOMA Communications with K-Means User Clustering. In Proceedings of the IEEE International Conference on Communications (ICC), Rome, Italy, 28 May–1 June 2023. [Google Scholar]
- Chu, T.M.C.; Zepernick, H.-J.; Duong, T.Q. Full-Duplex Cooperative NOMA Short-Packet Communications with K-Means Clustering. In Proceedings of the 2023 IEEE Statistical Signal Processing Workshop (SSP), Hanoi, Vietnam, 2–5 July 2023; pp. 576–580. [Google Scholar]
- Li, X.; Li, J.; Liu, Y.; Ding, Z.; Nallanathan, A. Residual Transceiver Hardware Impairments on Cooperative NOMA Networks. IEEE Trans. Wirel. Commun. 2020, 19, 680–695. [Google Scholar] [CrossRef]
- Asif, M.; Bao, X.; Ali, Z.; Ihsan, A.; Ahmed, M.; Li, X. Transmissive RIS-Empowered LEO-Satellite Communications with Hybrid-NOMA Under Residual Hardware Impairments. IEEE Trans. Green Commun. Netw. 2024, 9, 1167–1178. [Google Scholar] [CrossRef]
- Le, N.P.; Le, K.N. Uplink NOMA Short-Packet Communications With Residual Hardware Impairments and Channel Estimation Errors. IEEE Trans. Veh. Technol. 2022, 71, 4057–4072. [Google Scholar] [CrossRef]
- Xia, C.; Xiang, Z.; Su, B.; Liu, H.; Meng, J.; Pan, G. RIS-NOMA-Assisted Short-Packet Communication with Hardware Impairments. IEEE Internet Things J. 2024, 11, 2990–3002. [Google Scholar] [CrossRef]
- Kumar, S.; Kumbhani, B. Wireless-Powered Reconfigurable-Intelligent-Surface-Aided Cognitive NOMA Network with Hardware Impairments: IBL and FBL Analysis. IEEE Internet Things J. 2025, 12, 17473–17486. [Google Scholar] [CrossRef]
- Kumar, S.; Kumbhani, B. Performance Analysis of Active STAR-RIS-assisted NOMA with Hardware Impairments at Finite Blocklength. Digit. Signal Process. 2025, 163, 105206. [Google Scholar] [CrossRef]
- Karim, F.; Mahmood, N.H.; Sena, A.S.D.; Kumar, D.; Latva-aho, M. Finite Blocklength Analysis for SWIPT-Enabled RSMA Networks Under Realistic Assumptions. IEEE Trans. Wirel. Commun. 2025. [Google Scholar] [CrossRef]
- Li, X.; Zhao, J.; Chen, G.; Hao, W.; Costa, D.; Nallanathan, A.; Shin, H.; Yuen, C. STAR-RIS Assisted Covert Wireless Communications with Randomly Distributed Blockages. IEEE Trans. Wirel. Commun. 2025, 24, 4690–4705. [Google Scholar] [CrossRef]
- Chen, D.; Li, J.; Hu, J.; Zhang, X.; Zhang, S.; Wang, D. Interference-Assisted Energy Harvesting Short Packet Communications with Hardware Impairments. Int. J. Intell. Netw. 2024, 5, 231–240. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series, and Products, 7th ed.; Academic Press, Inc.: Cambridge, MA, USA, 2007. [Google Scholar]
[13,14] | [23,24] | [26] | [30,31] | [34] | [35] | This Work | |
---|---|---|---|---|---|---|---|
NOMA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Cooperative transmission | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Short-packet communications | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
Hardware impairments | ✓ | ✓ | ✓ | ||||
Average BLER | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Effective throughput maximization | ✓ | ✓ |
Symbol | Description |
---|---|
N | The number of antennas at S |
L | The blocklength for short-packet communications |
The number of information bits for | |
The number of information bits for | |
P | The transmit power at transmitters |
The variance of AWGN at receivers | |
The level of hardware impairments at transmitters | |
The level of hardware impairments at receivers | |
The power allocation factor for | |
The power allocation factor for | |
The channel vector from S to | |
The channel vector from S to | |
The channel coefficient from to | |
The beamforming vector for MRT | |
The fading mean of each entity in | |
The fading parameter of each entity in | |
The fading mean of each entity in | |
The fading parameter of each entity in | |
The fading mean of | |
The fading parameter of | |
The instantaneous BLER at | |
The instantaneous BLER at | |
The average BLER at | |
The average BLER at | |
T | The effective throughput |
Parameter | Value |
---|---|
Number of antennas | |
Levels of hardware impairments | |
Fading parameters | |
Fading means | dB, dB, dB |
Number of information bits | , |
Power allocation coefficient |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, D.; Hu, J.; Sun, X.; Wang, B.; Zhang, D. Short-Packet Communications in Multi-Antenna Cooperative NOMA Networks with Hardware Impairments. Sensors 2025, 25, 5444. https://doi.org/10.3390/s25175444
Zhang X, Chen D, Hu J, Sun X, Wang B, Zhang D. Short-Packet Communications in Multi-Antenna Cooperative NOMA Networks with Hardware Impairments. Sensors. 2025; 25(17):5444. https://doi.org/10.3390/s25175444
Chicago/Turabian StyleZhang, Xingang, Dechuan Chen, Jianwei Hu, Xiaolin Sun, Baoping Wang, and Dongyan Zhang. 2025. "Short-Packet Communications in Multi-Antenna Cooperative NOMA Networks with Hardware Impairments" Sensors 25, no. 17: 5444. https://doi.org/10.3390/s25175444
APA StyleZhang, X., Chen, D., Hu, J., Sun, X., Wang, B., & Zhang, D. (2025). Short-Packet Communications in Multi-Antenna Cooperative NOMA Networks with Hardware Impairments. Sensors, 25(17), 5444. https://doi.org/10.3390/s25175444