Millimeter-Wave Antennas for 5G Wireless Communications: Technologies, Challenges, and Future Trends
Abstract
1. Introduction
2. Methodology
2.1. Databases Searched
2.2. Search Keywords and Boolean Operators
- mmWave antenna OR mmWave MIMO OR mmWave decoupling technology OR mmWave antenna integration OR mmWave materials OR mmWave antenna fabrication.
- mmWave antenna AND mmWave MIMO.
2.3. Inclusion and Exclusion Criteria
- Articles that addressed performance evaluation, challenges, or future trends.
- Studies published between 2013 and 2025.
- Articles focused on design, analysis, fabrication, and materials.
- Classic review papers with high citations (without time window).
- Non-English articles.
- Duplicate studies or articles lacking full-text access.
- Research on devices other than antennas.
- Dissertation or Thesis.
- Articles with similar content but published earlier.
- Articles with only abstract.
2.4. Literature Screening Process
3. Typical Types of Millimeter-Wave Antennas
3.1. Microstrip Patch Antennas
3.2. Waveguide Antenna
3.3. Antenna Array
3.4. Antenna-in-Package (AiP)
4. Millimeter-Wave Antenna Design: The Application of MIMO Technology and Factors Related to Antenna Gain and Efficiency
4.1. Application of MIMO Technology in Millimeter-Wave Antenna Systems
4.1.1. Single-User MIMO (SU-MIMO)
4.1.2. Multi-User MIMO (MU-MIMO)
4.1.3. Massive MIMO (mMIMO)
4.1.4. Holographic MIMO (HMIMO)
4.2. Key Factors Affecting Antenna Gain and Efficiency in Millimeter-Wave Systems
4.2.1. Beamforming Strategies
4.2.2. Mutual Coupling Effects
4.2.3. Array Configuration
4.2.4. Surface Material Properties
5. Integration Technologies for Millimeter-Wave Antennas
5.1. Chip-Level Integration
5.2. Package-Level Integration
5.3. Module-Level Integration
6. Fabrication and Material Selection for Millimeter-Wave Antennas
6.1. Fabrication Technologies
6.1.1. PCB Printing Technology
6.1.2. LTCC Technology
6.1.3. Three-Dimensional Printing Technology
6.1.4. MEMS Technology
6.2. Material Selection
6.2.1. Low-Loss Dielectric Materials
- PTFE: A widely used high-frequency material due to its extremely low dielectric constant (εr ≈ 2.0–2.2) and loss tangent (tanδ ≈ 0.0004–0.001), making it ideal for microwave and mmWave applications. It is often reinforced with glass fibers or other fillers to improve mechanical rigidity. Its chemical inertness and thermal stability further ensure reliable performance under harsh conditions. It offers stable dielectric properties and good thermal management, making it widely used in mmWave antenna applications [74,75].
- Hydrocarbon-based materials: Cost-effective and process-friendly alternatives that combine hydrocarbon resins with ceramic fillers to achieve moderate dielectric constants (εr ≈ 3.0–4.0) and low loss tangent (tanδ ≈ 0.002–0.004). They offer good dimensional and thermal stability, and importantly, they can be manufactured using standard FR-4 processes, which significantly reduces production costs. Their electrical performance is comparable to that of PTFE-based materials.
- LCP: A thermoplastic material characterized by low dielectric loss (tanδ ≈ 0.002–0.004), excellent moisture resistance, and good thermal stability over a wide temperature range. Its flexibility and dimensional stability make it particularly suitable for flexible and wearable mmWave antenna designs [76,77].
- Microwave dielectric ceramics: Known for their superior electrical and mechanical properties, especially in high-frequency and high-power applications. These ceramics have a wide range of dielectric constants (εr ≈ 5–40) and extremely low loss tangents (tanδ ≈ 0.0001–0.001), along with high mechanical strength and thermal stability. This makes them ideal for components requiring precise frequency control and long-term reliability, such as filters, resonators, and antennas. Additionally, microwave dielectric ceramics are compatible with LTCC technology, enabling compact integration and widespread use in mmWave radar systems, 5G base stations, and satellite communication modules [78,79,80,81].
6.2.2. Novel Functional Materials
- Graphene: With ultra-high electron mobility and tunable electromagnetic response [82], graphene can be used in reconfigurable antennas, absorbers, and frequency selective surfaces (FSSs), enhancing antenna flexibility and performance.
7. Future Challenges and Development Prospects of Millimeter-Wave Antennas
7.1. Propagation Path Limitations: Signal Blockage and Coverage Constraints
- Introduction of RIS: By programmatically controlling the amplitude and phase of electromagnetic waves, RIS can dynamically optimize signal propagation paths, enabling non-line-of-sight (NLoS) transmission and significantly extending coverage.
- Deployment of Relay Nodes and Distributed Antenna Systems (DAS): Strategically placing relay devices in complex environments can establish multi-hop communication links, compensating for coverage gaps caused by line-of-sight limitations.
- Integration with Low-Frequency Bands: Employing a hybrid communication architecture that combines sub-6 GHz bands for robust connectivity with mmWave bands for high data throughput can achieve a balance between performance and coverage.
7.2. Power Consumption and Thermal Management: Heat Dissipation in Highly Integrated Systems
- Development of New Thermal Conductive and Dissipative Materials: Materials such as graphene, diamond, and high-conductivity ceramics are being explored to enhance heat transfer efficiency.
- Optimization of Thermal Management Structures: Techniques including microchannel cooling, thermoelectric cooling, and airflow-guiding structures aim to improve overall system thermal performance.
- Low-Power Circuit and Energy-Efficient Algorithm Design: Optimizing RF front-end architectures, reducing beamforming power consumption, and introducing adaptive power management strategies help minimize energy usage.
7.3. Cost and Mass Production Challenges: Balancing Performance and Economics
- Exploration of Low-Cost Alternative Materials: Modified polymers and flexible printed substrates offer cost-effective alternatives while maintaining acceptable performance levels.
- Promotion of Standardized Manufacturing Processes: Establishing universal packaging specifications and interface protocols for mmWave antenna modules can facilitate industry-wide collaboration.
- Development of Smart Manufacturing and Automated Testing Technologies: Improving production efficiency, reducing manual involvement, and ensuring product consistency and yield.
7.4. Standardization and Compatibility Issues: Interoperability Across Vendors
- Establish Unified International Standards: Led by organizations such as 3GPP, IEEE, and ITU, coordinated efforts are needed to advance standardization across all aspects of mmWave communication systems.
- Enhance Cross-Vendor Collaboration and Interoperability Testing: Joint laboratories and open platforms can validate system compatibility and promote convergence.
- Build Open-Source Toolchains and Simulation Platforms: Supporting modeling, algorithm verification, and system evaluation will lower development barriers and accelerate innovation.
7.5. Future Development Directions: Technological Convergence and System Innovation
- More Efficient MIMO and Beamforming Algorithms: AI-driven self-learning beam alignment, fast switching, and interference suppression algorithms are becoming mainstream.
- Metamaterials and RIS-Assisted Communications: Metamaterials enable compact broadband antennas, while RIS facilitates dynamic beam control.
- Pre-Research on THz Band Antennas: Early exploration of antenna designs for the 0.1–1 THz band aims to overcome traditional material and process limitations.
- AI-Driven Adaptive Antenna Systems: Deep learning enables real-time environmental sensing and automatic adjustment of antenna parameters to maintain optimal communication states.
- Cost-Effective and High-Stability Manufacturing Processes: Emerging technologies such as flexible electronics, printed electronics, and roll-to-roll manufacturing are being explored for mmWave antenna applications.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Agiwal, M.; Roy, A.; Saxena, N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655. [Google Scholar] [CrossRef]
- Chettri, L.; Bera, R. A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems. IEEE Internet Things J. 2020, 7, 16–32. [Google Scholar] [CrossRef]
- Shafi, M.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.Y.; De Silva, P.; Tufvesson, F.; Benjebbour, A.; Wunder, G. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 2017, 35, 1201–1221. [Google Scholar] [CrossRef]
- ITU–R, M.2083-0; IMT Vision—Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond. International Telecommunication Union: Geneva, Switzerland, 2015.
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What will 5G be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.C.; MacCartney, G.R.; Molisch, A.F.; Mellios, E.; Zhang, J.H. Overview of millimeter wave communications for Fifth-Generation (5G) wireless networks—With a focus on propagation models. IEEE Trans. Antennas Propag. 2017, 65, 6213–6230. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 2013, 1, 335–449. [Google Scholar] [CrossRef]
- He, Y.J.; Chen, Y.L.; Zhang, L.; Wong, S.W.; Chen, Z.N. An overview of terahertz antennas. China Commun. 2020, 17, 124–165. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Gutierrez, F., Jr.; Ben-Dor, E.; Murdock, J.N.; Qiao, Y.J.; Tamir, J.I. Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Trans. Antennas Propag. 2013, 61, 1850–1859. [Google Scholar] [CrossRef]
- Zhang, J.; Ge, X.; Li, Q.; Guizani, M.; Zhang, Y. 5G Millimeter-wave antenna array: Design and challenges. IEEE Wirel. Commun. 2017, 24, 106–112. [Google Scholar] [CrossRef]
- Ghosh, S.; Sen, D. An inclusive survey on array antenna design for millimeter-wave communications. IEEE Access 2019, 7, 83137–83161. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.J.; Zhu, H.P.; Wang, Q.L.; Sun, T.L.; Ni, T.; Lin, Y.H.; Liu, Y.; Mao, M.M.; Hu, J.; et al. Crystal structure and microwave dielectric property of xMgO-SiO2 (x = 1~2) system for 5G applications. Crystals 2023, 13, 1296. [Google Scholar] [CrossRef]
- Zhu, S.K.; Huang, Z.C.; Lou, W.C.; Song, K.X.; Khesro, A.; Hussain, F.; Tan, Z.Y.; Luo, X.J.; Mao, M.M.; Xue, L.Y.; et al. 5G microstrip patch antenna and microwave dielectric properties of 4 mol% LiF–MgO–x wt% MTiO3 (M = Ca, Sr) composite ceramics. J. Mater. Sci. Mater. Electron. 2021, 32, 23880–23888. [Google Scholar] [CrossRef]
- Yin, J.X.; Wu, Q.; Yu, C.; Wang, H.M.; Hong, W. Broadband symmetrical E-Shaped patch antenna with multimode resonance for 5G millimeter-wave applications. IEEE Trans. Antennas Propag. 2019, 67, 4474–4483. [Google Scholar] [CrossRef]
- Farooq, N.; Muzaffar, K.; Malik, S.A. Compact elliptical slot millimeter-wave MIMO antenna for 5G applications. J. Infrared Millim. Terahz Waves 2024, 45, 765–788. [Google Scholar] [CrossRef]
- Shamim, S.M.; Dina, U.S.; Arafin, N.; Sultana, S. Design of efficient 37 GHz millimeter wave microstrip patch antenna for 5G mobile application. Plasmonics 2021, 16, 1417–1425. [Google Scholar] [CrossRef]
- Firdausi, A.; Alaydrus, M. Designing multiband multilayered microstrip antenna for mmWave applications. In Proceedings of the 2016 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Jakarta, Indonesia, 3–5 October 2016; pp. 99–102. [Google Scholar]
- Choudhary, S.D. Design of microstrip rectangular patch antenna using coplanar parasitic Rod elements with Two-Layer substrate coupled integrated feeding line technique. Wirel. Pers. Commun. 2023, 131, 3073–3087. [Google Scholar] [CrossRef]
- Khalily, M.; Tafazolli, R.; Xiao, P.; Kishk, A.A. Broadband mm-Wave microstrip array antenna with improved radiation characteristics for different 5G applications. IEEE Trans. Antennas Propag. 2018, 66, 4641–4647. [Google Scholar] [CrossRef]
- Moschner, O.; Kocabasa, I.; Tebar, A.V.; Pirlet, F.; Kronberger, R. Low-cost additively manufactured high-gain millimeter-wave parabolic reflector antenna with waveguide double-dipole Feed: Millimeter waves meet additive manufacturing. IEEE Microw. Mag. 2024, 25, 128–136. [Google Scholar] [CrossRef]
- Hong, T.; Zheng, S.L.; Liu, R.K.; Zhao, W.T. Design of mmWave directional antenna for enhanced 5G broadcasting coverage. Sensors 2021, 21, 746. [Google Scholar] [CrossRef]
- Tewari, N.; Joshi, N.; Srivastava, S. A novel reconfigurable H-plane horn leaky wave substrate integrated waveguide MIMO antenna for K band. AEU-Int. J. Electron. Commun. 2023, 170, 154832. [Google Scholar] [CrossRef]
- Chen, Y.L.; Zhang, L.; He, Y.J.; Chen, Z.N. A polarization and radiation beam reconfigurable integrated antenna with broadband and high gain for mmWave vehicular communication. IEEE Trans. Veh. Technol. 2025, 74, 4526–4538. [Google Scholar] [CrossRef]
- Zarifi, D.; Saber, A.S.; Zaman, A.U. A high-gain gap waveguide-based 16 × 16 slot antenna array with low sidelobe level for mmwave applications. Sci. Rep. 2024, 14, 31458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.L.; Tang, R.; Chen, L.; Yang, S.Y.; Liu, X.S.; Yang, J. Ultra-wideband full-metal planar array antenna with a combination of ridge gap waveguide and E-Plane groove gap waveguide. IEEE Trans. Antennas Propag. 2022, 70, 8051–8058. [Google Scholar] [CrossRef]
- Hong, W.; Choi, J.; Park, D.; Kim, M.S.; You, C.; Jung, D.; Park, J. mmWave 5G NR cellular handset prototype featuring optically invisible beamforming antenna-on-display. IEEE Commun. Mag. 2020, 58, 54–60. [Google Scholar] [CrossRef]
- Caudill, D.; Chuang, A.; Jun, S.Y.; Gentile, C.; Golmie, N. Real-Time mmWave channel sounding through switched beamforming with 3-D dual-polarized phased-array antennas. IEEE Trans. Microw. Theory Tech. 2021, 69, 5021–5032. [Google Scholar] [CrossRef]
- Dixit, A.S.; Kumar, S.; Urooj, S.; Malibari, A. A highly compact antipodal Vivaldi antenna array for 5G millimeter wave Applications. Sensors 2021, 21, 2360. [Google Scholar] [CrossRef]
- Dai, L.L.; Wang, B.C.; Wang, M.; Yang, X.; Tan, J.B.; Bi, S.K.S.; Xu, S.H.; Yang, F.; Chen, Z.; Di, R.M.; et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results. IEEE Access 2020, 8, 45913–45923. [Google Scholar] [CrossRef]
- Al-Alem, Y.; Sifat, S.M.M.; Antar, Y.M.M.; Kishk, A.A. Millimeter-wave planar antenna array augmented with a low-cost 3D printed dielectric polarizer for sensing and internet of things (IoT) applications. Sci. Rep. 2023, 13, 9646. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Fernández, J. Joint synchronization and compressive channel estimation for frequency-selective hybrid mmWave MIMO systems. IEEE Trans. Wirel. Commun. 2022, 21, 548–562. [Google Scholar] [CrossRef]
- Myers, N.J.; Mezghani, A.; Heath, R.W. Swift-link: A compressive beam alignment algorithm for practical mmWave radios. IEEE Trans. Signal Process. 2019, 67, 1104–1119. [Google Scholar] [CrossRef]
- Xue, Q.; Guo, J.J.; Zhou, B.G.; Xu, Y.J.; Li, Z.D.; Ma, S.D. AI/ML for beam management in 5G-Advanced: A standardization perspective. IEEE Veh. Technol. Mag. 2024, 19, 64–72. [Google Scholar] [CrossRef]
- Alhenawy, M.; Schneider, M. Antenna-in-package (AiP) in mm-wave band. Int. J. Microw. Wirel. Technolog. 2013, 5, 55–64. [Google Scholar] [CrossRef]
- Khiabani, N.; Chiang, C.W.; Liu, N.C.; Chen, P.Y.; Kuan, Y.C.; Wu, C.T.M. Metamaterial-enabled ultrawideband mmWave antenna-in-package using heterogeneously-integrated Silicon IPD and HDI-PCB for B5G/6G applications. IEEE J. Emerg. Sel. Top. Circuits Syst. 2024, 10, 436–453. [Google Scholar] [CrossRef]
- Rappaport, T.S. Wireless Communications: Principles and Practice, 2nd ed.; Pearson Education India: Noida, India, 2001. [Google Scholar]
- Heath, R.W., Jr.; González-Prelcic, N.; Rangan, S.; Roh, W.; Sayeed, A.M. An overview of signal processing techniques for millimeter wave MIMO Systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 436–453. [Google Scholar] [CrossRef]
- Kumar, A.; Ansari, A.Q.; Kanaujia, B.K.; Kishor, J. A novel ITI-shaped isolation structure placed between two-port CPW-fed dual-band MIMO antenna for high isolation. AEU-Int. J. Electron. Commun. 2019, 104, 35–43. [Google Scholar] [CrossRef]
- Lu, L.; Li, G.Y.; Swindlehurst, A.L.; Ashikhmin, A.; Zhang, R. An overview of massive MIMO: Benefits and challenges. IEEE J. Sel. Top. Signal Process. 2014, 8, 742–758. [Google Scholar] [CrossRef]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef]
- Borges, D.; Montezuma, P.; Dinis, R.; Beko, M. Massive MIMO techniques for 5G and beyond—Opportunities and challenges. Electronics 2021, 10, 1667. [Google Scholar] [CrossRef]
- Jain, A.; Yadav, S.K. Design and analysis of compact 108 element multimode antenna array for massive MIMO base station. Prog. Electromagn. Res. C 2016, 61, 179–184. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.Y.; Du, H.Y.; Niyato, D.; Cui, S.G.; Ai, B.; Debbah, M.; Letaief, K.B.; Poor, H.V. A tutorial on Extremely Large-Scale MIMO for 6G: Fundamentals, signal processing, and applications. IEEE Commun. Surv. Tutor. 2024, 26, 1560–1605. [Google Scholar] [CrossRef]
- Liu, Z.L.; Zhang, J.Y.; Liu, Z.H.; Du, H.Y.; Wang, Z.; Niyato, D.; Guizani, M.; Ai, B. Cell-Free XL-MIMO meets Multi-Agent reinforcement learning: Architectures, challenges, and future directions. IEEE Wirel. Commun. 2024, 31, 155–162. [Google Scholar] [CrossRef]
- An, J.C.; Xu, C.; Ng, D.W.K.; Alexandropoulos, G.C.; Huang, C.; Yuen, C.; Hanzo, L. Stacked intelligent metasurfaces for efficient holographic MIMO communications in 6G. IEEE J. Sel. Areas Commun. 2023, 41, 2380–2396. [Google Scholar] [CrossRef]
- Gong, T.R.; Gavriilidis, P.; Ji, R.; Huang, C.W.; Alexandropoulos, G.C.; Wei, L.; Zhang, Z.Y.; Debbah, M.; Poor, H.V.; Yuen, C. Holographic MIMO communications: Theoretical foundations, enabling technologies, and future directions. IEEE Commun. Surv. Tutor. 2024, 26, 196–257. [Google Scholar] [CrossRef]
- Pizzo, A.; Marzetta, T.L.; Sanguinetti, L. Spatially-stationary model for holographic MIMO small-scale fading. IEEE J. Sel. Areas Commun. 2020, 38, 1964–1979. [Google Scholar] [CrossRef]
- Boccardi, F.; Heath, R.W.; Lozano, A.; Marzetta, T.L.; Popovski, P. Five disruptive technology directions for 5G. IEEE Commun. Mag. 2014, 52, 74–80. [Google Scholar] [CrossRef]
- Sohrabi, F.; Yu, W. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J. Sel. Top. Signal Process. 2016, 10, 501–513. [Google Scholar] [CrossRef]
- Arora, A.; Tsinos, C.G.; Shankar, M.R.B.; Chatzinotas, S.; Ottersten, B. Analog beamforming with antenna selection for large-scale antenna arrays. In Proceedings of the ICASSP 2021–2021 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 4795–4799. [Google Scholar]
- Roh, W.; Seol, J.Y.; Park, J.; Lee, B.; Lee, J.; Kim, Y.; Cho, J.; Cheun, K.; Aryanfar, F. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Commun. Mag. 2014, 52, 106–113. [Google Scholar] [CrossRef]
- El Ayach, O.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.Y.; Heath, R.W. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wirel. Commun. 2014, 13, 1499–1513. [Google Scholar] [CrossRef]
- Chen, C.E. An iterative hybrid transceiver design algorithm for millimeter wave MIMO systems. IEEE Wirel. Commun. Lett. 2015, 4, 285–288. [Google Scholar] [CrossRef]
- Khan, M.A.; Al Harbi, A.G.; Kiani, S.H.; Nordin, A.N.; Munir, M.E.; Saeed, S.I.; Iqbal, J.; Ali, E.M.; Alibakhshikenari, M.; Dalarsson, M. mmWave four-element MIMO antenna for future 5G systems. Appl. Sci. 2022, 12, 4280. [Google Scholar] [CrossRef]
- Khan, D.; Ahmad, A.; Choi, D.Y. Dual-band 5G MIMO antenna with enhanced coupling reduction using metamaterials. Sci. Rep. 2024, 14, 96. [Google Scholar] [CrossRef]
- Abubakar, H.S.; Zhao, Z.Q.; Kiani, S.H.; Khan, S.; Ali, T.; Bashir, M.A.; Cengiz, K.; Kamal, M.M. Eight element MIMO antenna for sub 6 GHz 5G cellular devices. Phys. Scr. 2024, 99, 085559. [Google Scholar] [CrossRef]
- Li, M.; Cheung, S. A Novel calculation-based parasitic decoupling technique for increasing isolation in multiple-element MIMO antenna arrays. IEEE Trans. Veh. Technol. 2021, 70, 446–458. [Google Scholar] [CrossRef]
- Parchin, N.O.; Al-Yasir, Y.I.A.; Ali, A.H.; Elfergani, I.; Noras, J.M.; Rodriguez, J.; Abd-Alhameed, R.A. Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications. IEEE Access 2019, 7, 15612–15622. [Google Scholar] [CrossRef]
- Pan, Y.M.; Qin, X.; Sun, Y.X.; Zheng, S.Y. A simple decoupling method for 5G millimeter-wave MIMO dielectric resonator antennas. IEEE Trans. Antennas Propag. 2019, 67, 2224–2234. [Google Scholar] [CrossRef]
- Khan, S.; Khan, O.; Shah, S.A.A.; Nasir, J.; Malik, B.T.; Khan, S.; Koziel, S. Highly compact wideband high-gain four-element MIMO antenna for 5G new radio IoT. IEEE IoT J. 2025, 12, 22350–22365. [Google Scholar] [CrossRef]
- Oladeinde, A.K.; Aryafar, E.; Pejcinovic, B. MmWave Tx-Rx self-interference suppression through a high impedance surface stacked EBG. Electronics 2024, 13, 3067. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Chang, Y.H.; Yang, Z.Y.; Huang, C.C.; Ho, C.E. Pronounced effect of surface coating on the antenna characteristics at mmWave frequency band. Surf. Coat. Technol. 2025, 497, 131801. [Google Scholar] [CrossRef]
- Lau, I.; Ekpo, S.; Zafar, M.; Ijaz, M.; Gibson, A. Hybrid mmWave-Li-Fi 5G architecture for reconfigurable variable latency and data rate communications. IEEE Access 2023, 11, 42850–42861. [Google Scholar] [CrossRef]
- Liu, R.; Yu, G.D.; Yuan, J.T.; Li, G.Y. Resource management for millimeter-wave ultra-reliable and low-latency communications. IEEE Trans. Commun. 2021, 69, 1094–1108. [Google Scholar] [CrossRef]
- Pavlidis, S.; Medwig, G.; Thomas, M. Ultrawide-bandgap semiconductors for high-frequency devices. IEEE Microw. Mag. 2024, 25, 68–79. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, D.; Zhang, Y.P.; Hong, W.; Ghalichechian, N. History and latest progress in antenna packaging technology: Part 2: Emerging materials and solutions. IEEE Antennas Propag. Mag. 2025, 67, 2–14. [Google Scholar] [CrossRef]
- Gadiel, G.M.; Ibwe, K.; Abdalla, A.T. Energy efficient phase interpolator based hybrid beamforming architecture for massive MIMO system. Telecommun. Syst. 2024, 85, 1–10. [Google Scholar] [CrossRef]
- Chen, J.-C. Energy-efficient hybrid beamforming design for intelligent reflecting surface-assisted mmWave massive MU-MISO systems. IEEE Trans. Green Commun. Netw. 2024, 8, 330–344. [Google Scholar] [CrossRef]
- Matin, M.A. Review on millimeter wave antennas-potential candidate for 5G enabled applications. Adv. Electromagn. 2016, 5, 98–105. [Google Scholar] [CrossRef]
- Li, S.; Li, C.; Mao, M.M.; Song, K.X.; Iqbal, Y.; Khesro, A.; Faouri, S.S.; Lu, Z.L.; Liu, B.; Sun, S.K.; et al. High Q × f values of Zn-Ni co-modified LiMg0.9Zn0.1-xNixPO4 microwave dielectric ceramics for 5G/6G LTCC modules. J. Eur. Ceram. Soc. 2022, 42, 5684–5690. [Google Scholar] [CrossRef]
- Park, Y.G.; Yun, I.; Chung, W.G.; Park, W.; Lee, D.H.; Park, J.U. High-resolution 3D printing for electronics. Adv. Sci. 2022, 9, 2104623. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.B.; Chan, K.F.; Shum, K.M.; Chan, C.H. Millimeter-wave and terahertz OAM discrete-lens antennas for 5G and beyond. IEEE Commun. Mag. 2022, 60, 34–39. [Google Scholar] [CrossRef]
- Anagnostou, D.E.; Zheng, G.Z.; Chryssomallis, M.T.; Lyke, J.C.; Ponchak, G.E.; Papapolymerou, J.; Christodoulou, C.G. Design, fabrication, and measurements of an RF-MEMS-based self-similar reconfigurable antenna. IEEE Trans. Antennas Propag. 2006, 54, 422–432. [Google Scholar] [CrossRef]
- Islam, S.; Pham, V.L.; Jang, T.H.; Yoo, H. Wave manipulation with mmwave wide bandwidth and extensive spatial coverage using 1-bit reconfigurable intelligent surface. Prog. Electromagn. Res. 2024, 179, 83–94. [Google Scholar] [CrossRef]
- Mandloi, M.S.; Malviya, L. Dual horn MIMO antenna using SIW technology for mmWave high speed vehicular communication. Phys. Scr. 2025, 100, 035523. [Google Scholar] [CrossRef]
- Hwang, I.J.; Oh, J.I.; Jo, H.W.; Kim, K.S.; Yu, J.W.; Lee, D.J. 28 GHz and 38 GHz dual-band vertically stacked dipole antennas on flexible liquid crystal polymer substrates for millimeter-wave 5G cellular handsets. IEEE Trans. Antennas Propag. 2022, 70, 3223–3236. [Google Scholar] [CrossRef]
- Jilani, S.F.; Munoz, M.O.; Abbasi, Q.H.; Alomainy, A. Millimeter-wave liquid crystal polymer based conformal antenna array for 5G applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 84–88. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Yu, X.Q.; Mao, M.M.; Liu, B.; Bafrooei, H.B.; Li, A.H.; Zhang, Y.Y.; Taheri-Nassaj, E.; Song, K.X. A high-performance, temperature-stable Mg1.99Ga0.01Si0.99Al0.01O4-CaTiO3 microwave dielectric ceramic and its 5G/6G waveguide filter. J. Eur. Ceram. Soc. 2023, 43, 7471–7477. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, M.M.; Ni, T.; Liu, H.; Fang, J.; Li, L.; Bafrooei, H.B.; Shi, F.; Hussain, F.; Wang, D.W. Unleashing the potential of Mg2SiO4-based ceramics for millimeter-wave applications: Achieving ultra-low loss with enhanced temperature stability through heterovalent ion substitution. Ceram. Int. 2024, 50, 329–339. [Google Scholar] [CrossRef]
- Fang, J.; Mao, M.M.; She, Y.X.; Yang, Y.T.; Ren, Y.J.; Bafrooei, H.B.; Feizpour, M.; Korotkevich, A.; Leontev, V.S.; Kuz’min, M.P.; et al. Phase stabilization strategy for robust high Q × f values in MgSiO3-based ceramics for millimeter-wave applications. J. Eur. Ceram. Soc. 2025, 45, 117586. [Google Scholar] [CrossRef]
- Xiu, Z.Y.; Mao, M.M.; Lu, Z.L.; Huang, Z.; Qi, Z.M.; Bafrooei, H.B.; Zhou, T.; Wang, D.W.; Lin, H.X.; Taheri-nassaj, E. High-Qf value and temperature stable Zn2+-Mn4+ cooperated modified cordierite-based microwave and millimeter-wave dielectric ceramics. J. Eur. Ceram. Soc. 2022, 42, 5712–5717. [Google Scholar] [CrossRef]
- Akbari, M.; Khan, M.W.A.; Hasani, M.; Björninen, T.; Sydänheimo, L.; Ukkonen, L. Fabrication and characterization of graphene antenna for low-cost and environmentally friendly RFID tags. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 1569–1572. [Google Scholar] [CrossRef]
- Hao, H.L.; Hui, D.; Lau, D. Material advancement in technological development for the 5G wireless communications. Nanotechnol. Rev. 2020, 9, 683–699. [Google Scholar] [CrossRef]
- Dixit, A.S.; Kumar, S. A survey of performance enhancement techniques of antipodal Vivaldi antenna. IEEE Access 2020, 8, 45774–45796. [Google Scholar] [CrossRef]
- Teeslink, T.S.; Torres, D.; Ebel, J.L.; Sepulveda, N.; Anagnostou, D.E. Reconfigurable bowtie antenna using metal-insulator transition in vanadium dioxide. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1381–1384. [Google Scholar] [CrossRef]
- Cao, T.; Wang, R.Z.; Simpson, R.E.; Li, G.X. Photonic Ge-Sb-Te phasechange metamaterials and their applications. Prog. Quantum Electron. 2020, 74, 100299. [Google Scholar] [CrossRef]
Ref. | Antenna Type | Substrate Type | Antenna Dimension | Operating Bands (GHz) | Gain (dBi) | Efficiency | Impedance Bandwidth |
---|---|---|---|---|---|---|---|
[14] | Symmetrical E-shaped | Taconic TLY | 0.46 mm × 0.70 mm | 37.5 | 8.5 | ≥85% | 45.4% |
[15] | Elliptical Slot | Rogers RT5880LZ | 16 mm × 16 mm | 28 | 6 | 94% | N/A |
[16] | Square Slot | Rogers RT5880 | 12 mm × 12 mm | 37 | 8.18 | N/A | 16.22% |
[17] | Multiband Multilayered | Taconic TLY-5 | 8.9 mm × 10 mm | 40–80 | 8.65 | N/A | N/A |
[19] | Linear Antenna Array | Roger 5880 | 17.45 mm × 99.2 mm | 24–31 | 19.88 | 86% | 5.37 GHz |
Ref. | Antenna Type | Operating Bands (GHz) | Peak Gain (dBi) | Return Loss (dB) | Impedance Bandwidth | Design |
---|---|---|---|---|---|---|
[21] | SIW horn | 24–28 | 8.06 | −30.89 | N/A | Semicircular structure |
[22] | SIW H-plane horn leaky wave | 22.8 and 26.32 | 7.3 and 8.1 | −33.5 | N/A | Dielectric loading and metamaterial structures |
[23] | Shared-aperture 2D leaky-wave array | 19–34 | 23.6 | N/A | 56.6% | A unit cell with two asymmetrical slots |
[24] | Slot array | 27.5–32.6 | 28.9 | N/A | 17% | Ridge gap waveguide and a tapered feeding network |
[25] | Full-metal planar array | 18.8–30.3 | 27.7 | N/A | 46.8% | Double-step double-ridged slot element |
Ref. | Antenna Type | Element Number | Operating Frequency (GHz) | Peak Gain (dBi) | Substrate |
---|---|---|---|---|---|
[28] | Vivaldi | 1 × 4 | 24.19–29.15, 30.28–40.5 | 13.2 | RT/Duroid 5880 |
[29] | RIS | 256 | 28.5 | 19.1 | N/A |
[30] | Planar | 4 × 4 | 24 | 20 | Rogers 5880 with an MSL feed |
Type | Dielectric Constant | Loss Tangent | Interconnect Density | Cost |
---|---|---|---|---|
LTCC | 5–8 | 0.003 | Low | High |
eWLB | 3.2 | 0.004–0.035 | High | Low |
HDI | 3–5 | 0.003–0.01 | Medium | Low |
Ref. | Technology | Operating Bands (GHz) | Mutual Coupling Reduction/ Isolation Improvement | Substrate | Relative Design Complexity | Antenna Dimension (mm2) |
---|---|---|---|---|---|---|
[56] | DGS | 3–3.6, 3.6–3.9 | Isolation improved to more than 10 dB | FR-4 | Low | 19.5 mm × 7.4 mm |
[57] | PDT | 2.45 | Mutual coupling reduced to around −40 dB | Rogers RO4350 | High | N/A |
[58] | Slit structures | 3.6 | High isolation with more than −25 dB mutual coupling | FR-4 | Low | 25 mm × 25 mm |
[59] | DRAs with vias added vertically | 25–27 | E-plane and H-plane coupling reduced 19.8 and 22.7 dB, leading to a high isolation level of over 30 dB | Rogers 6010 | Low | N/A |
[60] | CSRRs | 36–50 | Isolation improved to 22 dB | Rogers RO4350B | Low | 28 mm × 28 mm |
[61] | EBG structures | 28 | −60 dB, −72 dB of peak mutual coupling reduction and −25 dB of isolation improvement | Rogers RO4350B | High | N/A |
Integration Level | Operating Frequency (GHz) | Thickness (mm) | Typical Size | Interconnect Loss | Typical Technologies |
---|---|---|---|---|---|
Chip-level | <200 | 0.05–1 | μm~mm | Low | CMOS, SiGe |
Package-level | <120 | 0.1–1.5 | ~mm | Medium | eWLB, FOWLP, HDI |
Module-level | <60 | 0.5–3 | mm~cm | High | LTCC, PCB HDI |
Fabrication Technology | Features | Applications |
---|---|---|
PCB Printing | Mature and cost-effective Suitable for mass production Typical size accuracy: <0.1 mm Frequency range: up to 100 GHz | Mid-to-low-end mmWave devices 5G terminals Consumer electronics |
LTCC | Multilayer integration Supports 3D structures Dielectric constant: 3~10 Thermal expansion coefficient: <10 ppm/°C Bending strength: >100 MPa Elastic modulus: >80 GPa Frequency range: up to 300 GHz | RF FEMs mmWave radar 5G base stations Satellite communications |
3D Printing | Enables complex geometries Relatively low development cost Supports rapid prototyping Surface roughness: <50 μm Frequency range: up to 300 GHz | Prototype verification Customized small-batch production Novel antenna structures |
MEMS | Miniaturized and reconfigurable Enables dynamic control of frequency Actuation voltage: 5–50 V Response time: μs~ms Frequency range: up to 100 GHz | Smart beamforming systems Reconfigurable antennas Wearable devices |
Materials | Examples | Advantages | |
---|---|---|---|
Low-Loss Dielectric Materials | PTFE | RO 3003 (Rogers) RT/Duroid 5880 (Rogers) RF-35 (Taconic) | Stable dielectric properties Good thermal management Compatibility with PCB processes |
Hydrocarbon-based Materials | RO 4350B (Rogers) RO 4350C (Rogers) I-Tera®MT40 (Isola) | Stable dielectric properties Low cost and thermal stability Compatibility with PCB processes | |
LCP | Vectra® (Celanese) Zenite® (DuPont) Xydar® (SABIC) | Very low dielectric loss Moisture resistance Excellent flexibility for wearable devices | |
Microwave Dielectric Ceramics | Al2O3 Mg2SiO4 Mg2Al4Si5O18 | Ultra-low loss tangent High mechanical strength Multilayer integration (LTCC design) | |
Novel Functional Materials | Graphene | CVD-grown graphene Graphene-based composites | Ultra-high electron mobility Tunable electromagnetic response Supports reconfigurable designs |
Metamaterials | Split-ring resonators Fishnet structures Artificial magnetic conductors | Exotic EM properties (negative refractlon, perfect absorption, etc.) Enhances directivity and bandwidth | |
Smart and Phase-Change Materials | Vanadium dioxide (VO2) Germanium antimony telluride (GST, Ge2Sb2Te5) | Dynamic tunability via external stimuli Supports programmable RF components and adaptive antenna functions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Mao, M.; Xu, J.; Liu, H.; Wang, J.; Song, K. Millimeter-Wave Antennas for 5G Wireless Communications: Technologies, Challenges, and Future Trends. Sensors 2025, 25, 5424. https://doi.org/10.3390/s25175424
Yang Y, Mao M, Xu J, Liu H, Wang J, Song K. Millimeter-Wave Antennas for 5G Wireless Communications: Technologies, Challenges, and Future Trends. Sensors. 2025; 25(17):5424. https://doi.org/10.3390/s25175424
Chicago/Turabian StyleYang, Yutao, Minmin Mao, Junran Xu, Huan Liu, Jianhua Wang, and Kaixin Song. 2025. "Millimeter-Wave Antennas for 5G Wireless Communications: Technologies, Challenges, and Future Trends" Sensors 25, no. 17: 5424. https://doi.org/10.3390/s25175424
APA StyleYang, Y., Mao, M., Xu, J., Liu, H., Wang, J., & Song, K. (2025). Millimeter-Wave Antennas for 5G Wireless Communications: Technologies, Challenges, and Future Trends. Sensors, 25(17), 5424. https://doi.org/10.3390/s25175424