Neurophysiology of Downhill Mountain Bike Athletes—Benchmark Assessments of Event-Related Potentials
Abstract
1. Introduction
2. Materials and Methods
2.1. Assessment of Exposures
2.2. Neurological Assessment
2.3. ERP Stimulus
2.4. Data Processing
2.5. Statistical Anlaysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SRC | Sport-Related Concussion |
EEG | Electroencephalogrpahy |
ERP | Event-Related Potentials |
RHI | Repetitive Head Impacts |
References
- Taylor, S. ‘Extending the Dream Machine’: Understanding people’s participation in mountain biking. Ann. Leis. Res. 2010, 13, 259–281. [Google Scholar] [CrossRef]
- Palmer, D.; Florida-James, G.; Ball, C. Enduro World Series (EWS) Mountain Biking Injuries: A 2-year Prospective Study of 2010 Riders. Int. J. Sports Med. 2020, 42, 1012–1018. [Google Scholar] [CrossRef]
- Aitken, S.A.; Biant, L.C.; Court-Brown, C.M. Recreational mountain biking injuries. Emerg. Med. J. 2010, 28, 274–279. [Google Scholar] [CrossRef]
- Fiore, D.; Fwllows, K.; Henner, T. Injuries in Mountain Biking and Implications for Care. Muscle Ligaments Tendons J. 2020, 10, 179–191. [Google Scholar] [CrossRef]
- Patricios, J.S.; Schneider, K.J.; Dvorak, J.; Ahmed, O.H.; Blauwet, C.; Cantu, R.C.; A Davis, G.; Echemendia, R.J.; Makdissi, M.; McNamee, M.; et al. Consensus statement on concussion in sport: The 6th International Conference on Concussion in Sport–Amsterdam, October 2022. Br. J. Sports Med. 2023, 57, 695–711. [Google Scholar] [CrossRef]
- McLarnon, M.; Boyce, S.H.; Fisher, N.; Heron, N. ‘It’s All Downhill from Here’: A Scoping Review of Sports-Related Concussion (SRC) Protocols in Downhill Mountain Biking (DHI), with Recommendations for SRC Policy in Professional DMB. Int. J. Environ. Res. Public Health 2022, 19, 12281. [Google Scholar] [CrossRef]
- Clark, G.; Johnson, N.A.; Saluja, S.S.; Correa, J.A.; Delaney, J.S. Do Mountain Bikers Know When They Have Had a Concussion and, Do They Know to Stop Riding? Am. J. Ther. 2019, 31, e414–e419. [Google Scholar] [CrossRef]
- Bey, T.; Ostick, B. Second Impact Syndrome. West J. Emerg. Med. 2009, 10, 6–10. [Google Scholar] [PubMed]
- Hurst, H.T.; Atkins, S.; Dickinson, B.D. The magnitude of translational and rotational head accelerations experienced by riders during downhill mountain biking. J. Sci. Med. Sport 2018, 21, 1256–1261. [Google Scholar] [CrossRef] [PubMed]
- Allan, D.; Tooby, J.; Starling, L.; Tucker, R.; Falvey, É.; Salmon, D.; Brown, J.; Hudson, S.; Stokes, K.; Jones, B.; et al. The Incidence and Propensity of Head Acceleration Events in a Season of Men’s and Women’s English Elite-Level Club Rugby Union Matches. Sports Med. 2024, 54, 2685–2696. [Google Scholar] [CrossRef]
- Wallace, C.; Smirl, J.D.; Zetterberg, H.; Blennow, K.; Bryk, K.; Burma, J.; Dierijck, J.; Wright, A.D.; van Donkelaar, P. Heading in soccer increases serum neurofilament light protein and SCAT3 symptom metrics. BMJ Open Sport Exerc. Med. 2018, 4, e000433. [Google Scholar] [CrossRef] [PubMed]
- Kuzminski, S.; Clark, M.D.; Fraser, M.; Haswell, C.; Morey, R.; Liu, C.; Choudhury, K.; Guskiewicz, K.; Petrella, J. White Matter Changes Related to Subconcussive Impact Frequency during a Single Season of High School Football. Am. J. Neuroradiol. 2017, 39, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Burma, J.S.; Lapointe, A.P.; Wilson, M.; Penner, L.C.; Kennedy, C.M.; Newel, K.T.; Galea, O.A.; Miutz, L.N.; Dunn, J.F.; Smirl, J.D. Adolescent Sport-Related Concussion and the Associated Neurophysiological Changes: A Systematic Review. Pediatr. Neurol. 2023, 150, 97–106. [Google Scholar] [CrossRef]
- Neill, M.G.; Burma, J.S.; Miutz, L.N.; Kennedy, C.M.; Penner, L.C.; Newel, K.T.; Smirl, J.D. Transcranial Doppler Ultrasound and Concussion–Supplemental Symptoms with Physiology: A Systematic Review. J. Neurotrauma 2024, 41, 1509–1523. [Google Scholar] [CrossRef]
- Tabor, J.B.; Brett, B.L.; Nelson, L.; Meier, T.; Penner, L.C.; Mayer, A.R.; Echemendia, R.J.; McAllister, T.; Meehan, W.P.; Patricios, J.; et al. Role of biomarkers and emerging technologies in defining and assessing neurobiological recovery after sport-related concussion: A systematic review. Br. J. Sports Med. 2023, 57, 789–797. [Google Scholar] [CrossRef]
- Broglio, S.P.; Moore, R.D.; Hillman, C.H. A history of sport-related concussion on event-related brain potential correlates of cognition. Int. J. Psychophysiol. 2011, 82, 16–23. [Google Scholar] [CrossRef]
- Kennett, R. Modern electroencephalography. J. Neurol. 2012, 259, 783–789. [Google Scholar] [CrossRef]
- Jung, R.; Berger, W. Hans Bergers Entdeckung des Elektrenkephalogramms und seine ersten Befunde 1924?1931. Eur. Arch. Psychiatry Clin. Neurosci. 1979, 227, 279–300. [Google Scholar] [CrossRef]
- Hajra, S.G.; Liu, C.C.; Song, X.; Fickling, S.D.; Cheung, T.P.L.; D’aRcy, R.C.N. Multimodal characterization of the semantic N400 response within a rapid evaluation brain vital sign framework. J. Transl. Med. 2018, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hajra, S.G.; Liu, C.C.; Song, X.; Fickling, S.; Liu, L.E.; Pawlowski, G.; Jorgensen, J.K.; Smith, A.M.; Schnaider-Beeri, M.; Broek, R.V.D.; et al. Developing Brain Vital Signs: Initial Framework for Monitoring Brain Function Changes Over Time. Front. Neurosci. 2016, 10, 211. [Google Scholar] [CrossRef]
- Fickling, S.D.; Smith, A.M.; Pawlowski, G.; Hajra, S.G.; Liu, C.C.; Farrell, K.; Jorgensen, J.; Song, X.; Stuart, M.J.; D’aRcy, R.C.N. Brain vital signs detect concussion-related neurophysiological impairments in ice hockey. Brain 2019, 142, 255–262. [Google Scholar] [CrossRef]
- D’aRcy, R.C.N.; McCarthy, D.; Harrison, D.; Levenberg, Z.; Wan, J.; Hepburn, A.; Kirby, E.D.; Yardley, T.; Yamada-Bagg, N.; Fickling, S.D.; et al. An objective neurophysiological study of subconcussion in female and male high school student athletes. Sci. Rep. 2024, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fickling, S.D.; Poel, D.N.; Dorman, J.C.; D’aRcy, R.C.N.; A Munce, T. Subconcussive changes in youth football players: Objective evidence using brain vital signs and instrumented accelerometers. Brain Commun. 2021, 4, fcab286. [Google Scholar] [CrossRef]
- Davis, P.A. EFFECTS OF ACOUSTIC STIMULI ON THE WAKING HUMAN BRAIN. J. Neurophysiol. 1939, 2, 494–499. [Google Scholar] [CrossRef]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef]
- Sutton, S.; Tueting, P.; Zubin, J.; John, E.R. Information Delivery and the Sensory Evoked Potential. Science 1967, 155, 1436–1439. [Google Scholar] [CrossRef]
- Kutas, M.; Federmeier, K.D. Thirty Years and Counting: Finding Meaning in the N400 Component of the Event-Related Brain Potential (ERP). Annu. Rev. Psychol. 2011, 62, 621–647. [Google Scholar] [CrossRef]
- Kutas, M.; Hillyard, S.A. Reading Senseless Sentences: Brain Potentials Reflect Semantic Incongruity. Science 1980, 207, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Tsolaki, A.; Kosmidou, V.; Hadjileontiadis, L.; Kompatsiaris, I.; Tsolaki, M. Brain source localization of MMN, P300 and N400: Aging and gender differences. Brain Res. 2015, 1603, 32–49. [Google Scholar] [CrossRef]
- van Dinteren, R.; Arns, M.; Jongsma, M.L.A.; Kessels, R.P.C.; Di Russo, F. P300 Development across the Lifespan: A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e87347. [Google Scholar] [CrossRef]
- Bourisly, A.K.; Pothen, A. Influence of sex on P300: An event-related potential electrophysiological study. NeuroReport 2016, 27, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Munce, T.A.; Fickling, S.D.; Nijjer, S.R.; Poel, D.N.; D’aRcy, R.C.N. Mixed martial arts athletes demonstrate different brain vital sign profiles compared to matched controls at baseline. Front. Neurol. 2024, 15, 1438368. [Google Scholar] [CrossRef]
- Hayat, Z.; Sharma, S.; Minhaj, T. Efficacy of caffeine on athletic performance: A systematic review and meta-analysis. Sci. Sports 2022, 37, 333–353. [Google Scholar] [CrossRef]
- Del Coso, J.; Muñoz, G.; Muñoz-Guerra, J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef]
- Lorist, M.M.; Tops, M. Caffeine, fatigue, and cognition. Brain Cogn. 2003, 53, 82–94. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. What Should We Do About Habitual Caffeine Use in Athletes? Sports Med. 2018, 49, 833–842. [Google Scholar] [CrossRef]
- Salinero, J.J.; Lara, B.; Del Coso, J. Effects of acute ingestion of caffeine on team sports performance: A systematic review and meta-analysis. Res. Sports Med. 2018, 27, 238–256. [Google Scholar] [CrossRef]
- Shill, I.J.; West, S.W.; Sick, S.; Schneider, K.J.; Wiley, J.P.; E Hagel, B.; Black, A.M.; A Emery, C. Differences in injury and concussion rates in a cohort of Canadian female and male youth Rugby Union: A step towards targeted prevention strategies. Br. J. Sports Med. 2023, 58, 34–41. [Google Scholar] [CrossRef]
- Tabor, J.B.; Penner, L.C.; Galarneau, J.-M.; Josafatow, N.; Cooper, J.; Ghodsi, M.; Huang, J.; Fraser, D.D.; Smirl, J.; Esser, M.J.; et al. Plasma Biomarkers of Traumatic Brain Injury in Adolescents With Sport-Related Concussion. JAMA Netw. Open 2024, 7, e2431959. [Google Scholar] [CrossRef]
- Falkenstein, M.; Hoormann, J.; Hohnsbein, J. ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol. 1999, 101, 267–291. [Google Scholar] [CrossRef]
- Wronka, E.; Kaiser, J.; Coenen, A. Neural generators of the auditory evoked potential components P3a and P3b. Acta Neurobiol. Exp. 2012, 72, 51–64. [Google Scholar] [CrossRef]
- Intriligator, J.; Polich, J. On the relationship between background EEG and the P300 event-related potential. Biol. Psychol. 1994, 37, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Daltrozzo, J.; Wioland, N.; Kotchoubey, B. Sex Differences in Two Event-Related Potentials Components Related to Semantic Priming. Arch. Sex. Behav. 2007, 36, 555–568. [Google Scholar] [CrossRef]
- Newsome, R.N.; Pun, C.; Smith, V.M.; Ferber, S.; Barense, M.D. Neural correlates of cognitive decline in older adults at-risk for developing MCI: Evidence from the CDA and P300. Cogn. Neurosci. 2013, 4, 152–162. [Google Scholar] [CrossRef]
- Ainslie, P.N.; Cotter, J.D.; George, K.P.; Lucas, S.; Murrell, C.; Shave, R.; Thomas, K.N.; Williams, M.J.A.; Atkinson, G. Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J. Physiol. 2008, 586, 4005–4010. [Google Scholar] [CrossRef]
- McDowell, K.; Kerick, S.; Maria, D.S.; Hatfield, B. Aging, physical activity, and cognitive processing: An examination of P300. Neurobiol. Aging 2002, 24, 597–606. [Google Scholar] [CrossRef]
- Pontifex, M.B.; Hillman, C.H.; Polich, J. Age, physical fitness, and attention: P3a and P3b. Psychophysiology 2009, 46, 379–387. [Google Scholar] [CrossRef]
- Dixit, A.; Vaney, N.; Tandon, O.P. Evaluation of cognitive brain functions in caffeine users: A P3 evoked potential study. Indian J Physiol Pharmacol. 2006, 50, 175–180. [Google Scholar] [PubMed]
- Lorist, M.M.; Snel, J.; Kok, A.; Mulder, G. Influence of caffeine on selective attention in well-rested and fatigued subjects. Psychophysiology 1994, 31, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Nana, A.; Ramyarangsi, P.; Jamwai, L.; Hiranphan, P.; Siripornpanich, V.; Ajjimaporn, A. Low-dose caffeine enhances cognitive processing but not physical performance in fatigued taekwondo athletes: A randomized crossover trial. J. Int. Soc. Sports Nutr. 2025, 22. [Google Scholar] [CrossRef] [PubMed]
- Reeves, R.R.; Struve, F.A.; Patrick, G. The Effects of Caffeine Withdrawal on Cognitive P300 Auditory and Visual Evoked Potentials. Clin. Electroencephalogr. 1999, 30, 24–27. [Google Scholar] [CrossRef]
- Pelligrino, D.A.; Xu, H.-L.; Vetri, F.; Cunha, R.A.; de Mendonça, A. Caffeine and the Control of Cerebral Hemodynamics. J. Alzheimer’s Dis. 2010, 20, S51–S62. [Google Scholar] [CrossRef] [PubMed]
- Addicott, M.A.; Yang, L.L.; Peiffer, A.M.; Burnett, L.R.; Burdette, J.H.; Chen, M.Y.; Hayasaka, S.; Kraft, R.A.; Maldjian, J.A.; Laurienti, P.J. The effect of daily caffeine use on cerebral blood flow: How much caffeine can we tolerate? Hum. Brain Mapp. 2009, 30, 3102–3114. [Google Scholar] [CrossRef]
- Gaspar, C.; Rocha, C.; Balteiro, J.; Santos, H. Effects of caffeine on cerebral blood flow. Nutrition 2023, 117, 112217. [Google Scholar] [CrossRef]
- Barry, R.; Rushby, J.; Wallace, M.; Clarke, A.; Johnstone, S.; Zlojutro, I. Caffeine effects on resting-state arousal. Clin. Neurophysiol. 2005, 116, 2693–2700. [Google Scholar] [CrossRef]
- Giza, C.C.; Hovda, D.A. The New Neurometabolic Cascade of Concussion. Neurosurgery 2014, 75, S24–S33. [Google Scholar] [CrossRef]
- Judelson, D.A.; Armstrong, L.E.; Sökmen, B.; Roti, M.W.; Casa, D.J.; Kellogg, M.D. Effect of chronic caffeine intake on choice reaction time, mood, and visual vigilance. Physiol. Behav. 2005, 85, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Dames, K.D.; Smith, J.D.; Heise, G.D. Averaging Trials Versus Averaging Trial Peaks: Impact on Study Outcomes. J. Appl. Biomech. 2017, 33, 233–236. [Google Scholar] [CrossRef] [PubMed]
Males (n = 66) | Females (n = 26) | ||
---|---|---|---|
Age [Mean (95% CI)] | 24.8 (23.07, 26.54) | 24.41 (21.61, 27.2) | |
Caffeinated beverages consumed | None | 24 | 9 |
1–2 | 35 | 17 | |
3–4 | 7 | 0 | |
Difference From Normal | Less | 12 | 6 |
Same | 40 | 18 | |
More | 10 | 2 | |
Mood | Very Low | 2 | 1 |
Low | 4 | 2 | |
Good | 44 | 18 | |
Very Good | 16 | 5 | |
Alcohol Consumption (previous 24 h) | No | 20 | 45 |
Yes | 6 | 21 | |
Nicotine Consumption (previous 24 h) | No | 24 | 61 |
Yes | 2 | 5 | |
Psychoactive Consumption (previous 24 h) | No | 25 | 60 |
Yes | 1 | 6 |
Males (n = 66) | Females (n = 26) | |||
---|---|---|---|---|
ERP Outcome | Mean | 95% CI | Mean | 95% CI |
N100 Amplitude (μV) | 4.49 | (4.02, 4.96) | 5.64 | (4.67, 6.61) |
N100 Latency (ms) | 97.66 | (93.71, 101.61) | 94.54 | (87.98, 101.1) |
P300 Amplitude (μV) | 6.02 | (5.31, 6.73) | 7.93 | (6.53, 9.32) |
P300 Latency (ms) | 275.36 | (266.83, 283.9) | 276.46 | (262.08, 290.63) |
N400 Amplitude (μV) | 3.16 | (2.83, 3.49) | 3.04 | (2.44, 3.63) |
N400 Latency (ms) | 414.15 | (399.76, 428.54) | 430.08 | (400.59, 459.57) |
ERP Outcome | Exposure | Estimate (95% CI) | p Value |
---|---|---|---|
N100 Amplitude | Sex | 1.15 (0.20, 2.10) | 0.019 |
Age | −0.01 (−0.07, 0.06) | 0.827 | |
N100 Latency | Sex | −3.1 (−10.53, 4.33) | 0.409 |
Age | 0.09 (−0.39, 0.58) | 0.704 | |
P300 Amplitude | Sex | 1.89 (0.48, 3.29) | 0.009 |
Age | −0.05 (−0.14, 0.04) | 0.255 | |
P300 Latency | Sex | 0.93 (−15.12, 16.99) | 0.908 |
Age | −0.41 (−1.45, 0.63) | 0.434 | |
N400 Amplitude | Sex | −0.15 (−0.75, 0.46) | 0.631 |
Age | −0.06 (−0.10, −0.02) | 0.003 | |
N400 Latency | Sex | 16.04 (−13.05, 45.13) | 0.276 |
Age | 0.29 (−1.59, 2.18) | 0.759 |
Estimate (95% CI) | p Value | ||
---|---|---|---|
N100 Amplitude (μV) | Caffeine (Y/N) | −0.10 (−1.02, 0.82) | 0.834 |
More | −1.39 (−2.68, −0.09) | 0.036 | |
Less | 0.38 (−0.72, 1.48) | 0.491 | |
N100 Latency (ms) | Caffeine (Y/N) | −2.60 (−9.55, 4.36) | 0.46 |
More | −18.96 (−28.29, −9.64) | <0.001 | |
Less | −4.35 (−12.27, 3.57) | 0.278 | |
P300 Amplitude (μV) | Caffeine (Y/N) | −0.26 (−1.63, 1.11) | 0.707 |
More | −0.32 (−2.29, 1.66) | 0.751 | |
Less | 1.24 (−0.44, 2.92) | 0.146 | |
P300 Latency (ms) | Caffeine (Y/N) | −7.41 (−22.36, 7.55) | 0.328 |
More | −5.78 (−27.53, 15.97) | 0.599 | |
Less | 9.28 (−9.19, 27.74) | 0.321 | |
N400 Amplitude (μV) | Caffeine (Y/N) | −0.20 (−0.79, 0.40) | 0.514 |
More | −0.40 (−1.26, 0.46) | 0.353 | |
Less | −0.40 (−1.13, 0.33) | 0.275 | |
N400 Latency (ms) | Caffeine | 1.02 (−26.32, 28.35) | 0.941 |
More | 20.91 (−18.72, 60.53) | 0.297 | |
Less | −1.70 (−35.34, 31.94) | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neill, M.G.; Fletcher, E.K.S.; Larson, E.; Fraser, K.; Ramsay, S.; Smirl, J.D.; Emery, C.A. Neurophysiology of Downhill Mountain Bike Athletes—Benchmark Assessments of Event-Related Potentials. Sensors 2025, 25, 5388. https://doi.org/10.3390/s25175388
Neill MG, Fletcher EKS, Larson E, Fraser K, Ramsay S, Smirl JD, Emery CA. Neurophysiology of Downhill Mountain Bike Athletes—Benchmark Assessments of Event-Related Potentials. Sensors. 2025; 25(17):5388. https://doi.org/10.3390/s25175388
Chicago/Turabian StyleNeill, Matthew G., Elizabeth K. S. Fletcher, Ember Larson, Kristina Fraser, Scott Ramsay, Jonathan D. Smirl, and Carolyn A. Emery. 2025. "Neurophysiology of Downhill Mountain Bike Athletes—Benchmark Assessments of Event-Related Potentials" Sensors 25, no. 17: 5388. https://doi.org/10.3390/s25175388
APA StyleNeill, M. G., Fletcher, E. K. S., Larson, E., Fraser, K., Ramsay, S., Smirl, J. D., & Emery, C. A. (2025). Neurophysiology of Downhill Mountain Bike Athletes—Benchmark Assessments of Event-Related Potentials. Sensors, 25(17), 5388. https://doi.org/10.3390/s25175388