Differential Absorbance and PPG-Based Non-Invasive Blood Glucose Measurement Using Spatiotemporal Multimodal Fused LSTM Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Design of the Non-Invasive Blood Glucose Measurement System
2.2. Experiments
2.3. LSTM Network
2.4. PPG Signal Processing and Feature Extraction
2.4.1. Heart Rate
2.4.2. KTE and logE
2.5. Development of STMF-LSTM Model
3. Results and Discussion
3.1. Preliminary Validation of the NIBGMS
3.2. Cross Validation of STMF-LSTM Model
3.3. Ablation Experiment
3.4. Comparison with Previous Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Differential Absorbance | Standard Deviation | Standard Deviation of Combined Samples | ||
---|---|---|---|---|
Subject A | Subject B | Subject C | ||
ΔAnear−far (625 nm) | 0.005 | 0.006 | 0.009 | 0.007 |
ΔAnear−trans (625 nm) | 0.005 | 0.004 | 0.010 | 0.007 |
ΔAnear−far (850 nm) | 0.023 | 0.017 | 0.032 | 0.024 |
ΔAnear−trans (850 nm) | 0.021 | 0.019 | 0.035 | 0.026 |
ΔAnear−far (940 nm) | 0.012 | 0.020 | 0.014 | 0.016 |
ΔAnear−trans (940 nm) | 0.011 | 0.022 | 0.015 | 0.016 |
Appendix B
Parameters | Abbot’s Freestyle Libre | OneTouch Verio Flex |
---|---|---|
Measuring range | 2.2~27.8 mmol/L | 1.1–33.3 mmol/L |
Resolution | 0.1 mmol/L | 0.1 mmol/L |
System accuracy | 93.2% 1 within ±1.11 mmol/L or ±20% | 99.5% 2 within ±0.83 mmol/L or ±15% |
References
- Bertoni, A.G.; Krop, J.S.; Anderson, G.F.; Brancati, F.L. Diabetes-Related Morbidity and Mortality in a National Sample of U.S. Elders. Diabetes Care 2002, 25, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Villena Gonzales, W.; Mobashsher, A.; Abbosh, A. The Progress of Glucose Monitoring—A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. Sensors 2019, 19, 800. [Google Scholar] [CrossRef]
- Elhabashy, S.A.; Ezz elarab, H.S.; Thabet, R.A.; Oda, A.S. Assessment of Self-Monitoring of Blood Glucose in Type 1 Diabetic Children and Adolescents and Its Influence on Quality of Life: Practice and Perspective. Egypt. Pediatr. Assoc. Gaz. 2020, 68, 22. [Google Scholar] [CrossRef]
- Allen, J. Photoplethysmography and Its Application in Clinical Physiological Measurement. Physiol. Meas. 2007, 28, R1–R39. [Google Scholar] [CrossRef]
- Monte-Moreno, E. Non-Invasive Estimate of Blood Glucose and Blood Pressure from a Photoplethysmograph by Means of Machine Learning Techniques. Artif. Intell. Med. 2011, 53, 127–138. [Google Scholar] [CrossRef]
- Leitner, J.; Chiang, P.-H.; Dey, S. Personalized Blood Pressure Estimation Using Photoplethysmography: A Transfer Learning Approach. IEEE J. Biomed. Health Inform. 2022, 26, 218–228. [Google Scholar] [CrossRef]
- Hina, A.; Saadeh, W. A Noninvasive Glucose Monitoring SoC Based on Single Wavelength Photoplethysmography. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 504–515. [Google Scholar] [CrossRef]
- Islam, T.T.; Ahmed, M.S.; Hassanuzzaman, M.; Bin Amir, S.A.; Rahman, T. Blood Glucose Level Regression for Smartphone PPG Signals Using Machine Learning. Appl. Sci. 2021, 11, 618. [Google Scholar] [CrossRef]
- Prabha, A.; Yadav, J.; Rani, A.; Singh, V. Intelligent Estimation of Blood Glucose Level Using Wristband PPG Signal and Physiological Parameters. Biomed. Signal Process. Control 2022, 78, 103876. [Google Scholar] [CrossRef]
- Alonso-Silverio, G.A.; Francisco-García, V.; Guzmán-Guzmán, I.P.; Ventura-Molina, E.; Alarcón-Paredes, A. Toward Non-Invasive Estimation of Blood Glucose Concentration: A Comparative Performance. Mathematics 2021, 9, 2529. [Google Scholar] [CrossRef]
- Elgendi, M.; Fletcher, R.; Liang, Y.; Howard, N.; Lovell, N.H.; Abbott, D.; Lim, K.; Ward, R. The Use of Photoplethysmography for Assessing Hypertension. npj Digit. Med. 2019, 2, 60. [Google Scholar] [CrossRef]
- Avram, R.; Olgin, J.E.; Kuhar, P.; Hughes, J.W.; Marcus, G.M.; Pletcher, M.J.; Aschbacher, K.; Tison, G.H. A Digital Biomarker of Diabetes from Smartphone-Based Vascular Signals. Nat. Med. 2020, 26, 1576–1582. [Google Scholar] [CrossRef]
- Alty, S.R.; Angarita-Jaimes, N.; Millasseau, S.C.; Chowienczyk, P.J. Predicting Arterial Stiffness from the Digital Volume Pulse Waveform. IEEE Trans. Biomed. Eng. 2007, 54, 2268–2275. [Google Scholar] [CrossRef]
- Otsuka, T.; Kawada, T.; Katsumata, M.; Ibuki, C. Utility of Second Derivative of the Finger Photoplethysmogram for the Estimation of the Risk of Coronary Heart Disease in the General Population. Circ. J. 2006, 70, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Irace, C.; Carallo, C.; Scavelli, F.; De Franceschi, M.S.; Esposito, T.; Gnasso, A. Blood Viscosity in Subjects with Normoglycemia and Prediabetes. Diabetes Care 2014, 37, 488–492. [Google Scholar] [CrossRef]
- Singh, J.P.; Larson, M.G.; O’Donnell, C.J.; Wilson, P.F.; Tsuji, H.; Lloyd-Jones, D.M.; Levy, D. Association of Hyperglycemia with Reduced Heart Rate Variability (the Framingham Heart Study). Am. J. Cardiol. 2000, 86, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-W.; Li, C.-H.; Lam, R.W.-K.; Li, C.-K.; Ho, S. Diabetes Care in Motion: Blood Glucose Estimation Using Wearable Devices. IEEE Consum. Electron. Mag. 2020, 9, 30–34. [Google Scholar] [CrossRef]
- Du, K.; Li, J.; Huang, Z.; Song, H.; Zhang, Y.; Zhang, Y.; Mei, Z. A Non-Invasive Blood Glucose Detection System Based on Photoplethysmogram with Multiple near-Infrared Sensors. IEEE J. Biomed. Health Inform. 2025, 29, 2496–2505. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Aliberti, A.; Pupillo, I.; Terna, S.; Macii, E.; Di Cataldo, S.; Patti, E.; Acquaviva, A. A Multi-Patient Data-Driven Approach to Blood Glucose Prediction. IEEE Access 2019, 7, 69311–69325. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Choi, D.-S.; Kim, J.; Chun, S.W.; Gil, H.-W.; Cho, N.-J.; Kang, A.R.; Woo, J. Developing an Individual Glucose Prediction Model Using Recurrent Neural Network. Sensors 2020, 20, 6460. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Lu, L.; Aponte, L.; Angelidi, A.M.; Novak, V.; Karniadakis, G.E.; Mantzoros, C.S. Deep Transfer Learning and Data Augmentation Improve Glucose Levels Prediction in Type 2 Diabetes Patients. npj Digit. Med. 2021, 4, 109. [Google Scholar] [CrossRef]
- Khalil, O.S. Spectroscopic and Clinical Aspects of Noninvasive Glucose Measurements. Clin. Chem. 1999, 45, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Phillips, J.P.; Kyriacou, P.A. Monte Carlo Investigation of the Effect of Blood Volume and Oxygen Saturation on Optical Path in Reflectance Pulse Oximetry. Biomed. Phys. Eng. Express 2016, 2, 065018. [Google Scholar] [CrossRef]
- Chatterjee, S.; Budidha, K.; Kyriacou, P.A. Investigating the Origin of Photoplethysmography Using a Multiwavelength Monte Carlo Model. Physiol. Meas. 2020, 41, 084001. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, M.S.; Kim, O.-K.; Baik, H.-H.; Kim, J.-H. Near-Infrared Light Emitting Diode Based Non-Invasive Glucose Detection System. J. Nanosci. Nanotechnol. 2019, 19, 6187–6191. [Google Scholar] [CrossRef]
- Kaiser, J.F. Some Useful Properties of Teager’s Energy Operators. In Proceedings of the 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, Minneapolis, MN, USA, 27–30 April 1993; Volume 3, pp. 149–152. [Google Scholar]
- Li, W.; Bourlard, H. Sub-Band Based Log-Energy and Its Dynamic Range Stretching for Robust in-Car Speech Recognition. In Proceedings of the Conference of the International Speech Communication Association, Portland, OR, USA, 9–13 September 2012. [Google Scholar]
- Singh, D.; Singh, B. Investigating the Impact of Data Normalization on Classification Performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Parkes, J.L.; Slatin, S.L.; Pardo, S.; Ginsberg, B.H. A New Consensus Error Grid to Evaluate the Clinical Significance of Inaccuracies in the Measurement of Blood Glucose. Diabetes Care 2000, 23, 1143–1148. [Google Scholar] [CrossRef]
- Schmelzeisen-Redeker, G.; Schoemaker, M.; Kirchsteiger, H.; Freckmann, G.; Heinemann, L.; Del Re, L. Time Delay of CGM Sensors: Relevance, Causes, and Countermeasures. J. Diabetes Sci. Technol. 2015, 9, 1006–1015. [Google Scholar] [CrossRef]
- Zhou, Z.; Sun, B.; Huang, S.; Zhu, C.; Bian, M. Glycemic Variability: Adverse Clinical Outcomes and How to Improve It? Cardiovasc. Diabetol. 2020, 19, 102. [Google Scholar] [CrossRef]
- Ali, M.; Li, J.; Fan, B.; Nie, Z. PPG Based Noninvasive Blood Glucose Monitoring Using Multi-View Attention and Cascaded BiLSTM Hierarchical Feature Fusion Approach. IEEE J. Biomed. Health Inform. 2024, 29, 4692–4702. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.H.; Chowdhury, M.E.H.; Alqahtani, A. MMG-Net: Multi Modal Approach to Estimate Blood Glucose Using Multi-Stream and Cross Modality Attention. Biomed. Signal Process. Control 2024, 92, 105975. [Google Scholar] [CrossRef]
- Abbott Diabetes Care Ltd. Freestyle Libre 2 Continuous Glucose Monitors, User Manuals; Abbott Diabetes Care Ltd.: Alameda, CA, USA, 2022. [Google Scholar]
- LifeScan, Inc. OneTouch Verio Flex Blood Glucose Monitoring System Owner’s Booklet, Instructions for Use. 2024. Available online: https://static.onetouchchina.cn/sites/onetouch_cn/files/verio_flex_intro.pdf (accessed on 21 August 2025).
Parameters | LEDs | PDs | ||
---|---|---|---|---|
625 nm | 850 nm | 940 nm | ||
Type | CY-C1608SURC-T4 | CY-C1608QTIR85-T1 | CY-C1608QTIR94-T1 | VEMD1060X01 |
Manufacturer | Shenzhen Chaoyue Photoelectric Co., Ltd., Shenzhen, China | Shenzhen Chaoyue Photoelectric Co., Ltd., Shenzhen, China | Shenzhen Chaoyue Photoelectric Co., Ltd., Shenzhen, China | Vishay Intertechnology, Inc., Malvern, PA, USA |
Package form | 0603 | 0603 | 0603 | 0805 |
Peak wave length (nm) | 625 | 850 | 940 | - |
Forward voltage (V) | 1.7–2.4 | 1.2 | 1.2 | - |
Spectral Range (nm) | - | - | - | 350–1070 nm |
Wavelength of peak sensitivity (nm) | - | - | - | 820 |
Radiant sensitive area (mm2) | - | - | - | 0.23 mm2 |
Angle of half sensitivity (deg) | - | - | - | ±70 deg |
Physical Condition | Glucose (mmol/L) | Age (Years) | Gender (Male/ Female) | Number of Subjects | Number of Samples | Continuous Dataset (Days) | Reference Glucose Measurement Device |
---|---|---|---|---|---|---|---|
Type-2 diabetic | 6.5–29.1 | 64–73 | 1/2 | 3 | 93 | Freestyle Libre | |
Non-diabetic | 3.9–9.3 | 21–45 | 9/6 | 15 | 712 | 16 | Freestyle Libre/ OneTouch Verio Flex |
Total | 3.9–29.1 | 21–73 | 10/8 | 18 | 805 | 16 |
Model | Parameters | Common Setting |
---|---|---|
MLP | Number of layers: 3 Hidden size: 25 | Loss: MSE Optimizer: Adam Epoch: 50 Learning rate: 0.01 |
STMF-LSTM | Number of layers: {3,3} Hidden size: {25,25} | |
SVR | Kernel: ‘rbf’ C: 10 gamma: 0.01 epsilon: 0.5 | |
RFR | n_estimators:100 max_depth: 5 | |
XG Boost | n_estimators:100 learning_rate: 0.1 max_depth: 5 subsample: 0.8 colsample_bytree: 0.8 reg_alpha: 0.5 reg_lambda: 0.5 min_child_weight: 3 |
Dataset | Model | Parkes EGA (%) | RMSE (mmol/L) | MAE (mmol/L) | CORR | ||
---|---|---|---|---|---|---|---|
A | B | C, D, E | |||||
Diabetic dataset | MLP | 78.889 | 21.111 | 0 | 3.784 | 2.976 | 0.745 |
SVR | 77.419 | 22.581 | 0 | 4.014 | 3.162 | 0.711 | |
RFR | 78.495 | 21.505 | 0 | 4.010 | 3.181 | 0.712 | |
XG Boost | 77.419 | 22.581 | 0 | 3.862 | 3.140 | 0.737 | |
Non-diabetic dataset | MLP | 93.239 | 6.761 | 0 | 0.953 | 0.753 | 0.472 |
SVR | 91.573 | 8.427 | 0 | 0.956 | 0.750 | 0.466 | |
RFR | 91.854 | 8.146 | 0 | 0.972 | 0.771 | 0.443 | |
XG Boost | 90.309 | 9.691 | 0 | 1.012 | 0.800 | 0.390 | |
Continuous dataset | MLP | 91.176 | 8.824 | 0 | 0.983 | 0.753 | 0.469 |
SVR | 90.809 | 9.191 | 0 | 0.995 | 0.769 | 0.448 | |
RFR | 91.176 | 8.824 | 0 | 1.011 | 0.783 | 0.432 | |
XG Boost | 90.809 | 9.191 | 0 | 1.037 | 0.799 | 0.413 | |
STMF-LSTM | 95.089 | 4.911 | 0 | 0.811 | 0.620 | 0.678 |
Method | Inputs | Model | Parkes EGA (%) | RMSE (mmol/L) | MAE (mmol/L) | CORR | ||
---|---|---|---|---|---|---|---|---|
A | B | C, D, E | ||||||
A | PPG | MLP | 90.441 | 9.559 | 0 | 1.016 | 0.792 | 0.429 |
B | PPG + ΔA | MLP | 91.176 | 8.824 | 0 | 0.983 | 0.753 | 0.469 |
C | PPG + ΔA + Glu | STMF-LSTM | 95.089 | 4.911 | 0 | 0.811 | 0.620 | 0.678 |
Method | Principle | Model | RMSE (mmol/L) | MARD (%) | Glucose Range (mmol) |
---|---|---|---|---|---|
Kim et al., 2020 [21] | Glucose | GRU | 1.19 | 11.1 | 3.3–22.2 |
Ali et al., 2024 [33] | PPG | CBHFF | 1.67 | 17.88 | - |
Du et al., 2025 [18] | PPG | CBGnet | 0.476 | 5.13 | 4.4–6.6 |
Chowdhury et al., 2024 [34] | PPG + EDA + ST + food features | MMG-net | 0.959 | 12.57 | - |
Ours | PPG + ΔA + Glucose | STMF-LSTM | 0.811 | 10.122 | 3.9–9.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Xie, P.; Zhao, H.; Ji, Z. Differential Absorbance and PPG-Based Non-Invasive Blood Glucose Measurement Using Spatiotemporal Multimodal Fused LSTM Model. Sensors 2025, 25, 5260. https://doi.org/10.3390/s25175260
Cheng J, Xie P, Zhao H, Ji Z. Differential Absorbance and PPG-Based Non-Invasive Blood Glucose Measurement Using Spatiotemporal Multimodal Fused LSTM Model. Sensors. 2025; 25(17):5260. https://doi.org/10.3390/s25175260
Chicago/Turabian StyleCheng, Jinxiu, Pengfei Xie, Huimeng Zhao, and Zhong Ji. 2025. "Differential Absorbance and PPG-Based Non-Invasive Blood Glucose Measurement Using Spatiotemporal Multimodal Fused LSTM Model" Sensors 25, no. 17: 5260. https://doi.org/10.3390/s25175260
APA StyleCheng, J., Xie, P., Zhao, H., & Ji, Z. (2025). Differential Absorbance and PPG-Based Non-Invasive Blood Glucose Measurement Using Spatiotemporal Multimodal Fused LSTM Model. Sensors, 25(17), 5260. https://doi.org/10.3390/s25175260