EEL-GA: An Evolutionary Clustering Framework for Energy-Efficient 3D Wireless Sensor Networks in Smart Forestry
Abstract
1. Introduction
- i.
- A 3D WSN Simulation: A simulation environment that models sensor deployment in a 3D forest topology using real-world environmental data.
- ii.
- EEL-GA Clustering Protocol: A hybrid clustering strategy combining LEACH with a Genetic Algorithm to adaptively select energy-aware CHs.
- iii.
- Dual-Metric Fitness Function: A novel fitness model that evaluates CH candidates based on residual energy and intra-cluster distance.
- iv.
- Comparative Evaluation: Benchmarking against EEL-PSO, EEL-DE, and EEL-ABC to validate performance on metrics, including residual energy, cluster lifetime, and latency.
- v.
- Deployment Suitability: Demonstrated effectiveness of the protocol in smart forestry use cases requiring long-term, energy-efficient monitoring.
2. Related Work
2.1. Energy Efficiency vs. Energy Harvesting in WSNs
2.2. Comparative Summary of Optimization Techniques
Algorithm | Year | Key Features | Advantages |
---|---|---|---|
FCFAD [68] | 2024 | Fractal Clustering + Firefly Optimization | Enhances area coverage and connectivity |
MFG-LEACH [69] | 2024 | Game-theoretic CH Selection | Reduces energy use; boosts packet delivery |
IMP-RES-EL [70] | 2024 | Residual Energy-based CH Selection | Prolongs network life by up to 52% |
ECH [39] | 2024 | Adaptive Duty Cycling | Reduces data redundancy; saves energy |
AVOACS [71] | 2024 | African Vulture Optimization | Ensures stable, energy-balanced CH roles |
3D-DEEC [72] | 2024 | Clustering for 3D UWSNs | Energy fairness in volumetric networks |
SCHSM [73] | 2024 | Stochastic CH Selection | Maintains energy balance for IoT |
EEL-GA (Proposed) | 2025 | GA-based CH Selection for 3D WSNs | Better energy retention, lifetime, and delay minimization |
2.3. Deployment Challenges in 3D Forest Environments
2.4. Recent Advances in Sensor Deployment for 3D Environments
3. Structure of Wireless Sensor Node
3.1. Node Roles in Hierarchical WSNs
3.2. Communication Types in WSNs
3.3. 3D Sensor Deployment Strategy
3.4. Energy-Aware Operation Framework
4. Design Model
Deployment Position of Sensors
5. Sensing Model Approach
5.1. Network Assumption
- Residual energy of nodes;
- Intra-cluster distance to the CH.
5.2. Energy Consumption Model for Data Transmission and Reception
5.3. Sensing Distance Modeling
5.4. Cluster Head Selection Using LEACH
- p: desired CH probability;
- r: current round;
- G: nodes not selected as CHs in the last rounds.
6. Energy-Efficient LEACH Genetic Algorithm (EEL-GA)
6.1. Unified Dual-Metric Fitness Function for CH Selection
6.2. Flowchart of EEL-GA Execution
6.3. Algorithm Description
Algorithm 1 EEL-GA: Energy-Efficient LEACH Clustering using the Genetic Algorithm. |
Input: Number of nodes N, initial energy , population size P, number of generations G, cluster probability p, number of clustering rounds R, 3D area parameters, environmental dataset Output: Optimized cluster head list , energy metrics, performance statistics
|
6.4. Evolution Strategy and Dual-Metric Fitness Function
6.5. Clustering and Spatial Communication
6.6. Fitness-Based CH Selection with Spatial Metrics
6.7. Genetic Population Evolution Strategy
- Selection: The fittest chromosomes (based on residual energy and intra-cluster distance) are selected using tournament or roulette-based methods.
- Crossover: Selected parents exchange segments to create offspring, encouraging exploration of new CH combinations.
- Mutation: With a small probability, gene values are randomly altered to maintain diversity and prevent premature convergence.
- Replacement: Weaker chromosomes are replaced by fitter offspring, ensuring that the population progressively evolves toward optimal clustering configurations.
6.8. Simulation Setup
6.9. Environmental Impact on WSN Operations and EEL-GA Adaptations
7. Results and Discussion
7.1. Scheduling Overhead vs. Node Density
7.2. Residual Energy vs. Node Density
7.3. Cluster Lifetime vs. Number of Clusters
7.4. Average Transmission Delay vs. Node Density
7.5. Packet Delivery Ratio vs. Node Density
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw. 2002, 38, 393–422. [Google Scholar] [CrossRef]
- Mnasri, S.; Nasri, N.; van den Bossche, A.; Val, T. Improved many-objective optimization algorithms for the 3D indoor deployment problem. Arab. J. Sci. Eng. 2019, 44, 3883–3904. [Google Scholar] [CrossRef]
- Codeluppi, G.; Cilfone, A.; Davoli, L.; Ferrari, G. LoRaFarM: A LoRaWAN-based smart farming modular IoT architecture. Sensors 2020, 20, 2028. [Google Scholar] [CrossRef] [PubMed]
- Al-Qurabat, A.K.M.; Kadhum Idrees, A. Data gathering and aggregation with selective transmission technique to optimize the lifetime of Internet of Things networks. Int. J. Commun. Syst. 2020, 33, e4408. [Google Scholar] [CrossRef]
- Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All one needs to know about fog computing and related edge computing paradigms: A complete survey. J. Syst. Archit. 2019, 98, 289–330. [Google Scholar] [CrossRef]
- Al-Tous, H.; Barhumi, I. Reinforcement learning framework for delay sensitive energy harvesting wireless sensor networks. IEEE Sens. J. 2020, 21, 7103–7113. [Google Scholar] [CrossRef]
- Hao, J.; Chen, Q.; Huo, H.; Zhao, J. Energy efficient clustering algorithm for data gathering in wireless sensor networks. J. Netw. 2011, 6, 490. [Google Scholar] [CrossRef]
- Gupta, D.; Wadhwa, S.; Rani, S.; Khan, Z.; Boulila, W. EEDC: An energy efficient data communication scheme based on new routing approach in wireless sensor networks for future IoT applications. Sensors 2023, 23, 8839. [Google Scholar] [CrossRef] [PubMed]
- Regilan, S.; Hema, L. Optimizing energy efficiency and routing in wireless sensor networks through genetic algorithm-based cluster head selection in a grid-based topology. J. High Speed Netw. 2024, 30, 569–582. [Google Scholar] [CrossRef]
- Kumar, N.; Kaur, J. Improved leach protocol for wireless sensor networks. In Proceedings of the 2011 7th International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, 23–25 September 2011; pp. 1–5. [Google Scholar]
- Naveen, J.; Alphonse, P.; Chinnasamy, S. 3D grid clustering scheme for wireless sensor networks. J. Supercomput. 2020, 76, 4199–4211. [Google Scholar] [CrossRef]
- Soni, S.S.; Chand, N. Energy Efficient Multi-Level Clustering To Prolong The Lifetime of Wireless Sensor Networks. arXiv 2010, arXiv:1005.4031. [Google Scholar] [CrossRef]
- Javaid, N.; Qureshi, T.N.; Khan, A.H.; Iqbal, A.; Akhtar, E.; Ishfaq, M. EDDEEC: Enhanced Developed Distributed Energy-Efficient Clustering for Heterogeneous Wireless Sensor Networks. arXiv 2013, arXiv:1303.5274. [Google Scholar] [CrossRef]
- Behzadi, M.; Motameni, H.; Mohamadi, H.; Barzegar, B. Multi-Objective Energy-Efficient Clustering Protocol for Wireless Sensor Networks: An Approach Based on Metaheuristic Algorithms. IET Wirel. Sens. Syst. 2025, 15, e70011. [Google Scholar] [CrossRef]
- Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, HI, USA, 7 January 2000; p. 10. [Google Scholar]
- Merabtine, N.; Djenouri, D.; Zegour, D.E. Towards energy efficient clustering in wireless sensor networks: A comprehensive review. IEEE Access 2021, 9, 92688–92705. [Google Scholar] [CrossRef]
- Ogundile, O.O.; Oloyede, M.O.; Osanaiye, O.A.; Falayi, E.O.; Okusanya, A.A. Selective-path clustered-based routing protocol for large scale wireless sensor networks. Int. J. Commun. Netw. Distrib. Syst. 2020, 25, 284–306. [Google Scholar] [CrossRef]
- Rawat, P. Particle Swarm Optimization-based energy-efficient clustering protocol in wireless sensor networks. Soft Comput. 2021, 33, 14147–14165. [Google Scholar] [CrossRef]
- Sharmin, S.; Ahmedy, I.; Md Noor, R. An energy-efficient data aggregation clustering algorithm for wireless sensor Networks using hybrid PSO. Energies 2023, 16, 2487. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, X.; Shi, Y.; Xu, D.; Li, R. The energy-efficient MDA-SMAC protocol for wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 32. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Le, T.T.; Nguyen, H.H.; Voznak, M. Energy-efficient clustering multi-hop routing protocol in a UWSN. Sensors 2021, 21, 627. [Google Scholar] [CrossRef] [PubMed]
- Jasim, A.A.; Idris, M.Y.I.; Razalli Bin Azzuhri, S.; Issa, N.R.; Rahman, M.T.; Khyasudeen, M.F.b. Energy-efficient wireless sensor network with an unequal clustering protocol based on a balanced energy method (EEUCB). Sensors 2021, 21, 784. [Google Scholar] [CrossRef]
- Singh, S.P.; Sharma, S.C. A novel energy efficient clustering algorithm for wireless sensor networks. Eng. Technol. Appl. Sci. Res. 2017, 7, 1775–1780. [Google Scholar] [CrossRef]
- Zhao, L.; Qu, S.; Yi, Y. A modified cluster-head selection algorithm in wireless sensor networks based on LEACH. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 287. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Q.; Zhao, T.; Tie, Y.; Bai, F.; Jin, M. An improved energy-efficient routing protocol for wireless sensor networks. Sensors 2019, 19, 4579. [Google Scholar] [CrossRef]
- Tian, K.; Zhou, C.; Zhang, J. Improved LEACH protocol based on underwater energy propagation model, parallel transmission, and replication computing for underwater acoustic sensor networks. Sensors 2024, 24, 556. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.; Saxena, S. MCH-EOR: Multi-objective cluster head based energy-aware optimized routing algorithm in wireless sensor networks. Sustain. Comput. Inform. Syst. 2020, 28, 100406. [Google Scholar] [CrossRef]
- Singh, S.K.; Kumar, P.; Singh, J.P. A survey on successors of LEACH protocol. IEEE Access 2017, 5, 4298–4328. [Google Scholar] [CrossRef]
- Sambhe, N.; Yenurkar, G.; Kanase, V.V.; Anjana, S.; Ninawe, N.; Babrekar, S.; Pophali, O.; Kale, A.; Vyas, P. A comparative analysis using LEACH protocol to enhance energy efficiency in wireless sensor networks with harmony search algorithm. Discov. Comput. 2025, 28, 2. [Google Scholar] [CrossRef]
- Mosavi, A.; Bahmani, A. Energy consumption prediction using machine learning: A review. Preprints 2019. [Google Scholar] [CrossRef]
- Sahoo, B.M.; Pandey, H.M.; Amgoth, T. A genetic algorithm inspired optimized cluster head selection method in wireless sensor networks. Swarm Evol. Comput. 2022, 75, 101151. [Google Scholar] [CrossRef]
- Saadallah, N.R.; Alabady, S.A.; Al-Turjman, F. Energy-efficient cluster head selection via genetic algorithm. Al-Rafidain Eng. J. (AREJ) 2024, 29, 12–25. [Google Scholar] [CrossRef]
- Bacanin, N.; Arnaut, U.; Zivkovic, M.; Bezdan, T.; Rashid, T.A. Energy efficient clustering in wireless sensor networks by opposition-based initialization bat algorithm. In Computer Networks and Inventive Communication Technologies: Proceedings of Fourth ICCNCT 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–16. [Google Scholar]
- Khalilnasl, H.; Ghaffari, A. Cluster-based routing scheme for wireless sensor network using PSO and Firefly algorithms. Wirel. Pers. Commun. 2022, 122, 1231–1249. [Google Scholar]
- Gamal, M.; Mekky, N.E.; Soliman, H.; Hikal, N.A. Enhancing the lifetime of wireless sensor networks using fuzzy logic LEACH technique-based particle swarm optimization. IEEE Access 2022, 10, 36935–36948. [Google Scholar] [CrossRef]
- Hassan, A.A.h.; Shah, W.M.; Othman, M.F.I.; Hassan, H.A.H. Evaluate the performance of K-Means and the fuzzy C-Means algorithms to formation balanced clusters in wireless sensor networks. Int. J. Electr. Comput. Eng 2020, 10, 1515–1523. [Google Scholar] [CrossRef]
- Pal, R.; Saraswat, M.; Kumar, S.; Nayyar, A.; Rajput, P.K. Energy efficient multi-criterion binary grey wolf optimizer based clustering for heterogeneous wireless sensor networks. Soft Comput. 2024, 28, 3251–3265. [Google Scholar] [CrossRef]
- Sibi Amaran, D.R. Differential evolution with artificial bee colony optimization algorithm based sink hole detection in wireless sensor networks. Int. J. Emerg. Trends Eng. Res. 2020, 8, 1761–1767. [Google Scholar] [CrossRef]
- Khan, M.N.; Rahman, H.U.; Almaiah, M.A.; Khan, M.Z.; Khan, A.; Raza, M.; Al-Zahrani, M.; Almomani, O.; Khan, R. Improving energy efficiency with content-based adaptive and dynamic scheduling in wireless sensor networks. IEEE Access 2020, 8, 176495–176520. [Google Scholar] [CrossRef]
- Bandi, R.; Ananthula, V.R.; Janakiraman, S. Self adapting differential search strategies improved artificial bee colony algorithm-based cluster head selection scheme for WSNs. Wirel. Pers. Commun. 2021, 121, 2251–2272. [Google Scholar] [CrossRef]
- Luo, Y.; Yao, Y.; Shan, L. Analysis of ionospheric disturbances caused by the 2018 Bering Sea meteor explosion based on GPS observations. Sensors 2020, 20, 3201. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, S. A review of energy-efficient clustering protocols in wireless sensor networks for environmental monitoring. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 3797–3813. [Google Scholar]
- Ke, W.; Yangrui, O.; Hong, J.; Heli, Z.; Xi, L. Energy aware hierarchical cluster-based routing protocol for WSNs. J. China Univ. Posts Telecommun. 2016, 23, 46–52. [Google Scholar] [CrossRef]
- Abose, T.A.; Tekulapally, V.; Megersa, K.T.; Kejela, D.C.; Daka, S.T.; Jember, K.A. Improving wireless sensor network lifespan with optimized clustering probabilities, improved residual energy LEACH and energy efficient LEACH for corner-positioned base stations. Heliyon 2024, 10, e34382. [Google Scholar] [CrossRef] [PubMed]
- Ijemaru, G.K.; Ang, K.L.M.; Seng, J.K. Wireless power transfer and energy harvesting in distributed sensor networks: Survey, opportunities, and challenges. Int. J. Distrib. Sens. Netw. 2022, 18, 15501477211067740. [Google Scholar] [CrossRef]
- Tran, H.T.; Nguyen, C.V.; Nguyen, H.T.; Nguyen, M.T. Energy harvesting for devices in wireless sensor networks: A Review. EAI Endorsed Trans. Internet Things 2023, 9, 1–11. [Google Scholar] [CrossRef]
- Hasan, M.A.M.; Wang, Y.; Bowen, C.R.; Yang, Y. 2D nanomaterials for effective energy scavenging. Nano-Micro Lett. 2021, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Haque, A.; Jaffery, Z.A. Maximization of wireless sensor network lifetime using solar energy harvesting for smart agriculture monitoring. Ad Hoc Netw. 2019, 94, 101966. [Google Scholar] [CrossRef]
- Sudevalayam, S.; Kulkarni, P. Energy harvesting sensor nodes: Survey and implications. IEEE Commun. Surv. Tutor. 2010, 13, 443–461. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Zakari, A.; Khan, I.; Tan, D.; Alvarado, R.; Dagar, V. Energy efficiency and sustainable development goals (SDGs). Energy 2022, 239, 122365. [Google Scholar] [CrossRef]
- Hou, L.; Chen, W. A novel MPPT method for autonomous wireless sensor networks node with thermal energy harvesting. Eng. Res. Express 2020, 2, 015005. [Google Scholar] [CrossRef]
- Wang, C.; Gu, J.; Martínez, O.S.; Crespo, R.G. Economic and environmental impacts of energy efficiency over smart cities and regulatory measures using a smart technological solution. Sustain. Energy Technol. Assessments 2021, 47, 101422. [Google Scholar] [CrossRef]
- Owusu-Manu, D.G.; Quaigrain, R.A.; Edwards, D.J.; Hammond, M.; Hammond, M.; Roberts, C. Energy conservation literacy among households in Sub-Sahara Africa. Int. J. Energy Sect. Manag. 2022, 16, 1130–1149. [Google Scholar] [CrossRef]
- Stivanello, P. Co-Benefits of Plus Energy Buildings: More Than Just Energy Efficiency to Advocate for Tomorrow’s Building Technology. Ph.D. Thesis, Università Ca’ Foscari Venezia, Venezia, Italy, 2021. Available online: https://unitesi.unive.it/retrieve/49005e13-2d5c-44a2-8503-caa6f15fb145/877129-1243601.pdf (accessed on 1 January 2023).
- Jaiswal, K.; Anand, V. A QoS aware optimal node deployment in wireless sensor network using Grey wolf optimization approach for IoT applications. Telecommun. Syst. 2021, 78, 559–576. [Google Scholar] [CrossRef]
- Saad, A.; Senouci, M.R.; Benyattou, O. Toward a realistic approach for the deployment of 3D Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2020, 21, 1508–1519. [Google Scholar] [CrossRef]
- Dahmane, W.M.; Dollinger, J.F.; Ouchani, S. A bim-based framework for an optimal wsn deployment in smart building. In Proceedings of the 2020 11th International Conference on Network of the Future (NoF), Bordeaux, France, 12–14 October 2020; pp. 110–114. [Google Scholar] [CrossRef]
- Binh, H.T.T.; Hanh, N.T.; Nghia, N.D.; Dey, N. Metaheuristics for maximization of obstacles constrained area coverage in heterogeneous wireless sensor networks. Appl. Soft Comput. 2020, 86, 105939. [Google Scholar] [CrossRef]
- Metiaf, A.; Wu, Q. Wireless sensor network deployment optimization using reference-point-based non-dominated sorting approach (NSGA-III). J. Phys. Conf. Ser. 2019, 1284, 012063. [Google Scholar] [CrossRef]
- Hajjej, F.; Hamdi, M.; Ejbali, R.; Zaied, M. A new optimal deployment model of internet of things based on wireless sensor networks. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 2092–2097. [Google Scholar]
- Ng, C.K.; Wu, C.H.; Ip, W.H.; Yung, K.L. A smart bat algorithm for wireless sensor network deployment in 3-D environment. IEEE Commun. Lett. 2018, 22, 2120–2123. [Google Scholar] [CrossRef]
- Wang, Z.; Qin, C.; Wan, B.; Song, W.W. A comparative study of common nature-inspired algorithms for continuous function optimization. Entropy 2021, 23, 874. [Google Scholar] [CrossRef]
- Huang, S.; He, L.; Si, X.; Zhang, Y.; Hao, P. An effective krill herd algorithm for numerical optimization. Int. J. Hybrid Inf. Technol. 2016, 9, 127–138. [Google Scholar] [CrossRef]
- Madhiarasan, M.; Deepa, S. ELMAN neural network with modified grey wolf optimizer for enhanced wind speed forecasting. Circuits Syst. 2016, 7, 2975. [Google Scholar] [CrossRef]
- Niyonteze, J.D.D.; Zou, F.; Asemota, G.N.O.; Nsengiyumva, W.; Hagumimana, N.; Huang, L.; Nduwamungu, A.; Bimenyimana, S. Applications of metaheuristic algorithms in solar air heater optimization: A review of recent trends and future prospects. Int. J. Photoenergy 2021, 2021, 6672579. [Google Scholar] [CrossRef]
- Li, Q.; Liu, S.Y.; Yang, X.S. Influence of initialization on the performance of metaheuristic optimizers. Appl. Soft Comput. 2020, 91, 106193. [Google Scholar] [CrossRef]
- Sharma, N.; Gupta, V. A comprehensive study of fractal clustering and firefly algorithm for WSN Deployment: Implementation and outcomes. MethodsX 2024, 13, 103030. [Google Scholar] [CrossRef]
- Ntabeni, U.; Basutli, B.; Alves, H.; Chuma, J. Improvement of the Low-Energy Adaptive Clustering Hierarchy Protocol in Wireless Sensor Networks Using Mean Field Games. Sensors 2024, 24, 6952. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, K.; Wang, C.; Hu, H. Energy-efficient, cluster-based routing protocol for wireless sensor networks using fuzzy logic and quantum annealing algorithm. Sensors 2024, 24, 4105. [Google Scholar] [CrossRef] [PubMed]
- Hussien, A.G.; Gharehchopogh, F.S.; Bouaouda, A.; Kumar, S.; Hu, G. Recent applications and advances of African vultures optimization algorithm. Artif. Intell. Rev. 2024, 57, 335. [Google Scholar] [CrossRef]
- Lakshmi, K.; Hossain, A.; Mummaneni, K. An improved 3D distributed clustering algorithm for underwater wireless sensors. Int. J. Inf. Technol. 2025, 17, 859–868. [Google Scholar] [CrossRef]
- Pravin, R.A.; Murugan, K.; Thiripurasundari, C.; Christodoss, P.R.; Puviarasi, R.; Lathif, S.I.A. Stochastic cluster head selection model for energy balancing in IoT enabled heterogeneous WSN. Meas. Sens. 2024, 35, 101282. [Google Scholar] [CrossRef]
- Abdollahzadeh, S.; Navimipour, N.J. Deployment strategies in the wireless sensor network: A comprehensive review. Comput. Commun. 2016, 91, 1–16. [Google Scholar] [CrossRef]
- Ghosh, A.; Das, S.K. Coverage and connectivity issues in wireless sensor networks: A survey. Pervasive Mob. Comput. 2008, 4, 303–334. [Google Scholar] [CrossRef]
- Adnan, M.A.; Razzaque, M.A.; Ahmed, I.; Isnin, I.F. Bio-mimic optimization strategies in wireless sensor networks: A survey. Sensors 2013, 14, 299–345. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, R.V.; Venayagamoorthy, G.K. Bio-inspired algorithms for autonomous deployment and localization of sensor nodes. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2010, 40, 663–675. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, N. Efficient point coverage in wireless sensor networks. J. Comb. Optim. 2006, 11, 291–304. [Google Scholar] [CrossRef]
- Rebai, M.; Snoussi, H.; Hnaien, F.; Khoukhi, L. Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks. Comput. Oper. Res. 2015, 59, 11–21. [Google Scholar] [CrossRef]
- Rawat, P.; Singh, K.D.; Chaouchi, H.; Bonnin, J.M. Wireless sensor networks: A survey on recent developments and potential synergies. J. Supercomput. 2013, 68, 1–48. [Google Scholar] [CrossRef]
- Joseph, A.J.; Asaletha, R.; Manoj, V.; Nishanth, R. An Enhanced PSO-Based Energy Efficient Clustering Routing Algorithm for Wireless Sensor Network. In Proceedings of the International Conference on Artificial Intelligence of Things, Chandigarh, India, 30–31 March 2023; pp. 99–112. [Google Scholar]
- Zachariah, U.E.; Kuppusamy, L. A hybrid approach to energy efficient clustering and routing in wireless sensor networks. Evol. Intell. 2022, 15, 593–605. [Google Scholar] [CrossRef]
- Tay, M.; Senturk, A. A new energy-aware cluster head selection algorithm for wireless sensor networks. Wirel. Pers. Commun. 2022, 122, 2235–2251. [Google Scholar] [CrossRef]
- Vimal, V.; Singh, K.U.; Kumar, A.; Gupta, S.K.; Rashid, M.; Saket, R.; Padmanaban, S. Clustering isolated nodes to enhance network’s life time of WSNs for IoT applications. IEEE Syst. J. 2021, 15, 5654–5663. [Google Scholar] [CrossRef]
- Hassan, A.A.H.; Shah, W.M.; Habeb, A.H.H.; Othman, M.F.I.; Al-Mhiqani, M.N. An improved energy-efficient clustering protocol to prolong the lifetime of the WSN-based IoT. IEEE Access 2020, 8, 200500–200517. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Gupta, B.; Anurag, A. Deployment techniques in wireless sensor networks: A survey, classification, challenges, and future research issues. J. Supercomput. 2020, 76, 7333–7373. [Google Scholar] [CrossRef]
- Roberts, M.K.; Ramasamy, P. Optimized hybrid routing protocol for energy-aware cluster head selection in wireless sensor networks. Digit. Signal Process. 2022, 130, 103737. [Google Scholar] [CrossRef]
- Hassan, E.S.; Madkour, M.; Soliman, S.E.; Oshaba, A.S.; El-Emary, A.; Ali, E.S.; El-Samie, F.E.A. Energy-Efficient Data Fusion in WSNs Using Mobility-Aware Compression and Adaptive Clustering. Technologies 2024, 12, 248. [Google Scholar] [CrossRef]
- Wan, R.; Xiong, N.; Loc, N.T. An energy-efficient sleep scheduling mechanism with similarity measure for wireless sensor networks. Hum.-Centric Comput. Inf. Sci. 2018, 8, 18. [Google Scholar] [CrossRef]
- Cao, B.; Zhao, J.; Lv, Z.; Liu, X. A distributed parallel cooperative coevolutionary multiobjective evolutionary algorithm for large-scale optimization. IEEE Trans. Ind. Inform. 2017, 13, 2030–2038. [Google Scholar] [CrossRef]
- Kumar, S.; Prateek, M.; Ahuja, N.J.; Bhushan, B. DE-LEACH: Distance and Energy Aware LEACH. arXiv 2014, arXiv:1408.2914. [Google Scholar] [CrossRef]
- Meguerdichian, S.; Koushanfar, F.; Potkonjak, M.; Srivastava, M.B. Coverage problems in wireless ad-hoc sensor networks. In Proceedings of the Proceedings IEEE INFOCOM 2001, Conference on Computer Communications, Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No. 01CH37213), Anchorage, AK, USA,, 22–26 April 2001; Volume 3, pp. 1380–1387. [Google Scholar]
- Behera, T.M.; Mohapatra, S.K.; Samal, U.C.; Khan, M.S.; Daneshmand, M.; Gandomi, A.H. Residual Energy Based Cluster-head Selection in WSNs for IoT Application. arXiv 2019, arXiv:1902.01445. [Google Scholar] [CrossRef]
- John, J.; Rodrigues, P. A survey of energy-aware cluster head selection techniques in wireless sensor network. Evol. Intell. 2022, 15, 1109–1121. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Heinzelman, W.B.; Chandrakasan, A.P.; Balakrishnan, H. An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 2002, 1, 660–670. [Google Scholar] [CrossRef]
- Kamble, A.; Patil, B. Selection of Cluster Head Techniques in WSN: A Review. In Proceedings of the 2nd International Conference on IoT, Social, Mobile, Analytics & Cloud in Computational Vision & Bio-Engineering (ISMAC-CVB 2020), Tiruchengode, Tamil Nadu, India, 29–30 October 2020. [Google Scholar]
- Roeva, O.; Fidanova, S.; Paprzycki, M. Population size influence on the genetic and ant algorithms performance in case of cultivation process modeling. In Proceedings of the Recent Advances in Computational Optimization: Results of the Workshop on Computational Optimization WCO 2013, Kraków, Poland, 8–11 September 2013; pp. 107–120. [Google Scholar] [CrossRef]
- Alnajjar, A.B.; Kadim, A.M.; Jaber, R.A.; Hasan, N.A.; Ahmed, E.Q.; Altaei, M.S.M.; Khalaf, A.L. Wireless sensor network optimization using genetic algorithm. J. Robot. Control (JRC) 2022, 3, 827–835. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, V.; Kaiwartya, O.; Dohare, U.; Kumar, N.; Lloret, J. Towards green communication in wireless sensor network: GA enabled distributed zone approach. Ad Hoc Netw. 2019, 93, 101903. [Google Scholar] [CrossRef]
- Luomala, J.; Hakala, I. Effects of Temperature and Humidity on Radio Signal Strength in Outdoor Wireless Sensor Networks. In Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), Lodz, Poland, 13–16 September 2015; pp. 1247–1255. [Google Scholar]
- Markham, A.; Trigoni, N.; Ellwood, S. Effect of Rainfall on Link Quality in an Outdoor Forest Deployment. In Proceedings of the 6th International Conference on Wireless On-Demand Network Systems and Services, Athens, Greece, 26–28 July 2007; pp. 1–6. [Google Scholar]
Aspect | Energy Efficiency (EE) | Energy Harvesting (EH) |
---|---|---|
Operational Stability | Offers consistent performance regardless of external factors [51] | Highly dependent on environmental conditions, like solar or wind availability [48] |
Hardware Requirements | Lower hardware complexity, based on standard microcontrollers and sensors [52] | Requires additional circuits for MPPT, energy storage, and regulators [52] |
Economic Viability | Faster return on investment; reduced energy bills and maintenance [53] | Higher upfront cost; cost-effective only in long-term and specific conditions [46] |
Environmental Benefits | Indirectly reduces carbon footprint through lowered energy use [50] | Offers green energy collection, but effectiveness varies [48] |
Implementation Scalability | Scalable in urban and remote settings, without reliance on ambient energy [54] | Limited scalability in shaded, enclosed, or indoor deployments [46] |
Suitability for WSNs | Suitable for mission-critical and delay-sensitive WSN applications [52] | Best suited as a backup energy source, not as a primary power strategy [48] |
Author | Year | Objectives | Optimization Method |
---|---|---|---|
[56] | 2022 | Maximize Coverage, Connectivity, Minimize Cost | Gray Wolf Optimization |
[57] | 2020 | Coverage, Cost, Connectivity | NSGA-II |
[58] | 2020 | Coverage, Cost, Connectivity | NSGA-II |
[59] | 2020 | Coverage, Connectivity | GA, PSO |
[60] | 2019 | Coverage, Network Lifetime, Connectivity | NSGA-III |
[61] | 2019 | Coverage, Lifetime, Energy Dissipation, Connectivity | MOPFA |
[62] | 2018 | Lifetime, Cost, Fault Tolerance, Connectivity | Smart Bat Algorithm |
Parameter | Value |
---|---|
Number of nodes | 200 |
Network size | 1000 m × 1000 m × 1000 m |
Base station position | (500, 500, 500) m |
Initial energy per node | J |
Packet size | 1000–4000 bits |
CH selection probability (p) | 0.04 |
Rounds simulated | 11 (initial analysis, extendable for long-term evaluation) |
GA population size | 10 |
Data aggregation energy () | 5 nJ/bit |
Tx/Rx energy () | 50 nJ/bit |
Free space energy () | 10 pJ/bit/m2 |
Multipath energy () | 0.0013 pJ/bit/m4 |
Environmental conditions | Real dataset |
Deployment type | Randomized 3D probabilistic |
Parameter | Description | Value / Justification |
---|---|---|
Weight for residual energy in fitness | 0.6 (empirically tuned) | |
GA population size | Number of chromosomes | 10 (resource-aware trade-off) |
Max generations | Number of GA iterations | 30 (converged within limit) |
CH selection probability p | LEACH-based CH percentage | 0.05 (standard in WSN) |
Environmental Factor | WSN Impact | EEL-GA Adaptation |
---|---|---|
Temperature | Accelerated battery depletion and reduced signal strength [101] | Dynamic adjustment of node duty cycles and transmission power |
Humidity | Signal attenuation and increased packet loss [101] | Selection of alternative routing paths and link-quality-based clustering |
Precipitation | Elevated risk of node failure and path loss [102] | Activation of redundant nodes and rerouting to maintain connectivity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batool, F.; Ali, K.; Lasebae, A.; Windridge, D.; Kiyani, A. EEL-GA: An Evolutionary Clustering Framework for Energy-Efficient 3D Wireless Sensor Networks in Smart Forestry. Sensors 2025, 25, 5250. https://doi.org/10.3390/s25175250
Batool F, Ali K, Lasebae A, Windridge D, Kiyani A. EEL-GA: An Evolutionary Clustering Framework for Energy-Efficient 3D Wireless Sensor Networks in Smart Forestry. Sensors. 2025; 25(17):5250. https://doi.org/10.3390/s25175250
Chicago/Turabian StyleBatool, Faryal, Kamran Ali, Aboubaker Lasebae, David Windridge, and Anum Kiyani. 2025. "EEL-GA: An Evolutionary Clustering Framework for Energy-Efficient 3D Wireless Sensor Networks in Smart Forestry" Sensors 25, no. 17: 5250. https://doi.org/10.3390/s25175250
APA StyleBatool, F., Ali, K., Lasebae, A., Windridge, D., & Kiyani, A. (2025). EEL-GA: An Evolutionary Clustering Framework for Energy-Efficient 3D Wireless Sensor Networks in Smart Forestry. Sensors, 25(17), 5250. https://doi.org/10.3390/s25175250