A Data-Driven Framework for Digital Transformation in Smart Cities: Integrating AI, Dashboards, and IoT Readiness
Abstract
1. Introduction
- The design of a taxonomy for Smart Cities that identifies the key components of DT, framed within a comprehensive 360-degree model.
- The proposal of a holistic methodology to automatically assess the DT status of local public administrations, integrating multiple organizational dimensions.
- The creation of a domain-specific corpus compiled from the official websites of various local public administrations, as well as from surveys conducted among relevant stakeholders, with the aim of serving as a foundation for the analysis and training of AI models. Furthermore, the corpus has been made openly available to the scientific community to facilitate further research and experimentation.
- A comparative evaluation of traditional methods (e.g., surveys) and various AI models, conducted and validated through a real-world case study involving local public administrations.
- The design of interactive dashboards that support the extraction of insights and action plans to guide and enhance DT processes within public administrations.
- The development of a flexible methodology that can be adapted to other organizational domains, such as healthcare providers, educational institutions, or industrial companies.
- An analysis of the Smart City component—specifically city sensorization (e.g., for air quality, noise, and solar radiation)—highlighting its current underutilization and proposing strategic actions to reinforce its development.
2. State of the Art
2.1. Alignment with Sustainability Frameworks
2.2. Findings and Contributions of Our Proposal
3. Materials and Methods
4. Experiments
4.1. Data Description
4.1.1. Structured Data from Municipal Interview Surveys
- The questions are mainly closed-ended, which facilitates statistical processing and ensures consistency in responses. In addition, rating scales (e.g., from 1 to 5, or “Not at all” to “Very much”) were used to measure perceptions and levels of implementation.
- The questionnaire covers a broad range of dimensions related to the digital transformation of municipal services, including innovation, governance, technologies used, citizen participation, and digital competencies of municipal staff. This provides a multidimensional perspective to the study.
- The questions were tailored to the size and competencies of each municipality to ensure relevance for both large and small/medium-sized municipalities. Stratification by population size was used to create representative segments of the study universe.
- The survey was addressed to technical staff and municipal managers, thereby collecting information from those directly involved in the implementation of digital services.
- The dataset includes both quantitative indicators (e.g., human and technological resources, use of electronic services, and process automation levels) and qualitative indicators (e.g., perceived barriers and digital maturity levels).
- To ensure a high participation rate and accurate responses, the survey was conducted using a face-to-face strategy. The protocol consisted of the following:
- –
- Sending a formal notice to the mayors of selected municipalities to inform them about the study and to request collaboration by identifying key informants—individuals with appropriate expertise and knowledge.
- –
- Holding an in-person meeting at the University of Alicante with selected participants to explain the study and methodology in detail.
- –
- Scheduling appointments with the designated respondents in each municipality for the administration of the questionnaire.
4.1.2. Unstructured Data Collection and Corpus Creation
- Removal of HTML tags, URLs, and special characters;
- Anonymization of municipal names and demonyms to prevent model bias;
- Normalization of accents, casing, and spacing inconsistencies.
4.1.3. The New DTI
- Holistic approach: It integrates technical (infrastructure), operational (services), and strategic (Smart City) dimensions, in alignment with the literature emphasizing the multifactorial nature of DT [51];
- Differentiated weighting: It assigns variable weights to each dimension based on its relative impact, prioritizing those with greater influence on citizen engagement and service delivery;
- Contextual adaptability: It includes indicators tailored to the local public sector, allowing for more precise and context-sensitive assessments.
Generalizable Core Dimensions (70%)
- Communication Infrastructure (10%): Assesses the quality of network infrastructure and connectivity, a foundational prerequisite for DT;
- Backoffice (10%): Measures the digitalization of internal administrative processes, essential for operational efficiency;
- ICT Equipment (20%): Evaluates the modernization of technological assets, reflecting the institution’s digital capacity;
- Digital Services (20%): Quantifies the availability and accessibility of online public services, a key indicator of digital maturity [29];
- Strategic Planning (10%): Assesses the existence, regular updating, and digitalization of strategic and operational plans (e.g., emergency response, sustainability, mobility, or digital inclusion), reflecting proactive and resilient governance.
Context-Specific Dimensions for Local Public Administration (30%)
- Smart Cities (20%): Includes the deployment of IoT platforms and vertical solutions (e.g., mobility or energy), which are foundational to intelligent urban ecosystems;
- Smart Tourism Destination (10%): An innovative dimension that evaluates digital services aimed at visitors, particularly relevant in tourism-driven municipalities.
4.2. Neural Network for DTI Prediction from Survey Data
4.2.1. Validation Method
4.2.2. Neural Network Architecture
- Input layer: 128 neurons;
- Hidden layers: 64 neurons and 32 neurons, both with ReLU activation;
- Output layer: 1 neuron with linear activation (predicting a float value between 0 and 100);
- Loss function: Mean Squared Error (MSE), suitable for regression tasks.
4.2.3. Results
- Mean Absolute Error (MAE) on training set: 0.050;
- MAE on test set: 7.788.
4.3. Transformer Model Trained on Organizational Web Content for DTI Prediction
Model Evaluation
- MAE on the training set: 0.424;
- MAE on the test set: 7.889.
4.4. Analysis of Experimental Results
4.5. Visual Analysis Through Dashboards
4.6. Challenges and Future Directions in Sensor Integration for Local Governments
- (1)
- Traffic and Mobility Control.
- Vehicle counting sensors and automatic number plate recognition (ANPR) systems;
- Traffic and surveillance cameras for intersections and accident-prone zones;
- Occupancy sensors in public parking areas;
- Smart pedestrian crossings and real-time public transport monitoring.
- (2)
- Risk and Safety Monitoring.
- Motion and infrared sensors for crowd monitoring in public spaces;
- Heat and flame detectors in wildfire-prone zones;
- Water-level sensors and weather stations for flood detection;
- Air quality sensors in industrial or high-risk zones.
- (3)
- Environmental Health Surveillance.
- Air pollution detectors (e.g., NO2, PM2.5, CO);
- Acoustic sensors to measure and map noise pollution;
- UV radiation and pollen level monitors for vulnerable populations;
- Weather and humidity sensors to inform energy and water consumption policies.
- (4)
- Energy Monitoring and Management.
- Smart lighting systems that adjust their intensity based on ambient conditions or occupancy;
- Energy meters to track real-time consumption in public buildings;
- Solar panel and battery performance monitors;
- Load balancing sensors for optimizing electricity distribution and reducing peak demand.
- (5)
- Urban Cleanliness and Waste Management.
- Fill-level sensors embedded in waste containers, which allow dynamic route optimization for collection vehicles, reducing fuel consumption and operational costs [70];
- Smart recycling stations equipped with usage counters, contamination detectors, and user feedback interfaces to enhance recycling efficiency and citizen participation [73];
- Environmental sensors capable of detecting illegal dumping, waste overflow, or hazardous emissions (e.g., methane or ammonia) in public areas, thereby enabling rapid response and enforcement [72];
- Temperature and gas sensors in waste storage facilities to monitor fire risk and ensure compliance with safety regulations.
Analysis of Sensor Integration for Local Governments
5. Conclusions
5.1. Practical Implications
5.2. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Drechsler, W. Seamlessness as disenfranchisement: The digital state of pigs and how to resist. Acta Balt. Hist. Philos. Sci. 2020, 8, 38–53. [Google Scholar] [CrossRef]
- Alenezi, M. Deep dive into digital transformation in higher education institutions. Educ. Sci. 2021, 11, 770. [Google Scholar] [CrossRef]
- de Genaro Chiroli, D.M.; Ferrassa, T.P.; Idalgo, L.d.N.; Mick, M.M.A.P.; Kovaleski, J.L.; Aragão, F.V.; Tebcherani, S.M.; Zola, F.C. Digital Transformation for Smart and Resilient Cities: Assessing Platform Maturity and ISO 37123 Compliance. Platforms 2025, 3, 3. [Google Scholar] [CrossRef]
- Misuraca, G.; Viscusi, G. Digital governance in the public sector: Challenging the policy-maker’s innovation dilemma. In Proceedings of the 8th International Conference on Theory and Practice of Electronic Governance, Guimaraes, Portugal, 27–30 October 2014; pp. 146–154. [Google Scholar]
- OECD. 2023 OECD Digital Government Index. 2023. Available online: https://www.oecd.org/en/publications/2023-oecd-digital-government-index_1a89ed5e-en.html (accessed on 4 August 2025).
- European Commission. Digital Decade. 2025. Available online: https://digital-strategy.ec.europa.eu/en/policies (accessed on 4 August 2025).
- European Commission. Accelerating the Digital Transformation of Governments. EU eGovernment Action Plan 2016–2020. 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52016DC0179, (accessed on 4 July 2025).
- European Commission. Digital Decade Policy Programme 2030. 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32022D2481 (accessed on 4 July 2025).
- European Commission. Data Innovation Repository. 2024. Available online: https://interoperable-europe.ec.europa.eu/collection/european-commission-digital-innovation-framework/solution/digital-innovation-lab-ilab/data-innovation-repository (accessed on 4 August 2025).
- European Commission. Data Innovation Toolkit. 2024. Available online: https://interoperable-europe.ec.europa.eu/collection/european-commission-digital-innovation-framework/solution/digital-innovation-lab-ilab/data-innovation-toolkit (accessed on 4 August 2025).
- Weber-Lewerenz, B.C. Thinking Otherwise: Integrating Existing Buildings in Smart Cities–Best Practice. In Impact of Digital Twins in Smart Cities Development; IGI Global: Hershey, PA, USA, 2023; pp. 127–149. [Google Scholar]
- Weber-Lewerenz, B.C. Technological Dream or Safety Traumata?: Fire Protection in Smart Cities–Digitization and AI Ensure Burning Ideas and a New Culture of Thinking in Construction 4.0. In Impact of Digital Twins in Smart Cities Development; IGI Global: Hershey, PA, USA, 2023; pp. 174–196. [Google Scholar]
- Al-Haija, Q.A. IoT networks for smart cities. In Digital Twin and Blockchain for Sensor Networks in Smart Cities; Elsevier: Amsterdam, The Netherlands, 2025; pp. 107–135. [Google Scholar]
- Rittl, L.G.F.; Zaman, A.; de Oliveira, F.H. Digital Transformation in Waste Management: Disruptive Innovation and Digital Governance for Zero-Waste Cities in the Global South as Keys to Future Sustainable Development. Sustainability 2025, 17, 1608. [Google Scholar] [CrossRef]
- Sharma, S.; Popli, R.; Singh, S.; Chhabra, G.; Saini, G.S.; Singh, M.; Sandhu, A.; Sharma, A.; Kumar, R. The role of 6G technologies in advancing smart city applications: Opportunities and challenges. Sustainability 2024, 16, 7039. [Google Scholar] [CrossRef]
- Cerrillo, A. Los principios de los datos abiertos en la legislación española. IDP. Rev. Internet Derecho Política 2014, 19, 62–77. [Google Scholar] [CrossRef]
- Amairah, A.; Al-tamimi, B.N.; Anbar, M.; Aloufi, K. Cloud computing and internet of things integration systems: A review. In Proceedings of the Recent Trends in Data Science and Soft Computing: Proceedings of the 3rd International Conference of Reliable Information and Communication Technology (IRICT 2018), Kuala Lumpur, Malaysia, 23–24 July 2018; pp. 406–414. [Google Scholar]
- Shahzadi, S.; Iqbal, M.; Dagiuklas, T.; Qayyum, Z.U. Multi-access edge computing: Open issues, challenges and future perspectives. J. Cloud Comput. 2017, 6, 1–13. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Salahuddin, M.A.; Hussini, S.J.; Khreishah, A.; Khalil, I.; Guizani, M.; Al-Fuqaha, A. Smart cities: A survey on data management, security, and enabling technologies. IEEE Commun. Surv. Tutor. 2017, 19, 2456–2501. [Google Scholar] [CrossRef]
- Kim, T.h.; Ramos, C.; Mohammed, S. Smart city and IoT. Future Gener. Comput. Syst. 2017, 76, 159–162. [Google Scholar] [CrossRef]
- Alavi, A.H.; Jiao, P.; Buttlar, W.G.; Lajnef, N. Internet of Things-enabled smart cities: State-of-the-art and future trends. Measurement 2018, 129, 589–606. [Google Scholar] [CrossRef]
- Pérez, L.M.; Oltra-Badenes, R.; Oltra Gutiérrez, J.V.; Gil-Gómez, H. A bibliometric diagnosis and analysis about smart cities. Sustainability 2020, 12, 6357. [Google Scholar] [CrossRef]
- Ma, J.; Wang, H. Relationship analysis between executive motivation and digital transformation in Chinese A-Share companies: An empirical study. Heliyon 2024, 10, e25011. [Google Scholar] [CrossRef]
- De la Peña, J.; Cabezas, M. La gran oportunidad. In Claves para Liderar la Transformación Digital en las Empresas y en la Economía, 1a ed.; Ediciones Gestión: Barcelona, Spain, 2000. [Google Scholar]
- Westerman, G.; Bonnet, D.; McAfee, A. Leading Digital: Turning Technology into Business Transformation; Harvard Business Press: Boston, MA, USA, 2014. [Google Scholar]
- Siedler, C.; Dupont, S.; Tafvizi Zavareh, M.; Zeihsel, F.; Ehemann, T.; Sinnwell, C.; Göbel, J.C.; Zink, K.J.; Aurich, J.C. Maturity model for determining digitalization levels within different product lifecycle phases. Prod. Eng. 2021, 15, 431–450. [Google Scholar] [CrossRef]
- Hassen, M.B.; Zahaf, S.; Gargouri, F. Business View Specification of Enterprise Information Systems Based on Core Ontologies. Procedia Comput. Sci. 2024, 237, 380–388. [Google Scholar] [CrossRef]
- Szelągowski, M.; Berniak-Woźny, J. How to improve the assessment of BPM maturity in the era of digital transformation. Inf. Syst. E-Bus. Manag. 2022, 20, 171–198. [Google Scholar] [CrossRef]
- Michelotto, F.; Joia, L.A. Organizational digital transformation readiness: An exploratory investigation. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 3283–3304. [Google Scholar] [CrossRef]
- Weber-Lewerenz, B.C. Innovation Empowerment in Construction 4.0 by the CDR-Approach: A new Field of Scientific Research for the Digital Breakthrough; Springer Nature: London, UK, 2024. [Google Scholar]
- Kaiser, Z.A.; Deb, A. Sustainable smart city and Sustainable Development Goals (SDGs): A review. Reg. Sustain. 2025, 6, 100193. [Google Scholar] [CrossRef]
- Gu, Y.; Katz, S.; Wang, X.; Vasarhelyi, M.; Dai, J. Government ESG reporting in smart cities. Int. J. Account. Inf. Syst. 2024, 54, 100701. [Google Scholar] [CrossRef]
- Barykin, S.E.; Strimovskaya, A.V.; Sergeev, S.M.; Borisoglebskaya, L.N.; Dedyukhina, N.; Sklyarov, I.; Sklyarova, J.; Saychenko, L. Smart city logistics on the basis of digital tools for ESG goals achievement. Sustainability 2023, 15, 5507. [Google Scholar] [CrossRef]
- Nations, U. Transforming our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sdgs.un.org/2030agenda (accessed on 4 August 2025).
- European Commission. Managing the Implementation of the SDGs. 2020. Available online: https://commission.europa.eu/document/download/c5e7c338-6755-40ed-bc37-abb53b8448bb_en?filename=Managing%20the%20implementation%20of%20the%20SDGs (accessed on 4 August 2025).
- Parra-Domínguez, J.; Gil-Egido, A.; Rodríguez-González, S. SDGs as one of the drivers of Smart City Development: The indicator selection process. Smart Cities 2022, 5, 1025–1038. [Google Scholar] [CrossRef]
- Peral, J.; Gil, D.; Rotbei, S.; Amador, S.; Guerrero, M.; Moradi, H. A machine learning and integration based architecture for cognitive disorder detection used for early autism screening. Electronics 2020, 9, 516. [Google Scholar] [CrossRef]
- Kimball, R.; Caserta, J. The Data Warehouse ETL Toolkit; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Arman, A.; Bellini, P.; Bologna, D.; Nesi, P.; Pantaleo, G.; Paolucci, M. Automating IoT Data Ingestion Enabling Visual Representation. Sensors 2021, 21, 8429. [Google Scholar] [CrossRef]
- LLoret, A. Informe de Trabajos Realizados año 2021. CENID, Centro de Inteligencia Digital de la Provincia de Alicante. 2021. Available online: https://cenid.es/wp-content/uploads/2022/02/Proyecto1_2021.pdf (accessed on 4 August 2025).
- Whaiduzzaman, M.; Barros, A.; Chanda, M.; Barman, S.; Sultana, T.; Rahman, M.S.; Roy, S.; Fidge, C. A Review of Emerging Technologies for IoT-Based Smart Cities. Sensors 2022, 22, 9271. [Google Scholar] [CrossRef]
- Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Zhang, H.; Song, H.; Li, S.; Zhou, M.; Song, D. Pre-Trained Language Models for Text Generation: A Survey. ACM Comput. Surv. 2024, 56, 1–39. [Google Scholar] [CrossRef]
- Badaro, G.; Saeed, M.; Papotti, P. Transformers for Tabular Data Representation: A Survey of Models and Applications. Trans. Assoc. Comput. Linguist. 2023, 11, 240–261. [Google Scholar] [CrossRef]
- Bhargava, M.G.; Kiran, K.; Rao, D.R. Analysis and design of visualization of educational institution database using power bi tool. Glob. J. Comput. Sci. Technol. 2018, 18, 1–8. [Google Scholar]
- Adreani, L.; Bellini, P.; Fanfani, M.; Nesi, P.; Pantaleo, G. Smart City Scenario Editor for General What-If Analysis. Sensors 2024, 24, 2225. [Google Scholar] [CrossRef]
- Marchetti, D.; Oliveira, R.; Figueira, A.R. Are global north smart city models capable to assess Latin American cities? A model and indicators for a new context. Cities 2019, 92, 197–207. [Google Scholar] [CrossRef]
- Datta, P. Digital transformation of the Italian public administration: A case study. Commun. Assoc. Inf. Syst. 2020, 46, 11. [Google Scholar] [CrossRef]
- Kitchin, R. The ethics of smart cities. RTE Brainstorm 2019, 27. Available online: https://www.rte.ie/brainstorm/2019/0425/1045602-the-ethics-of-smart-cities/ (accessed on 4 July 2025).
- OECD; JRC. Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD Publishing: Paris, France, 2008. [Google Scholar] [CrossRef]
- Vial, G. Understanding Digital Transformation: A Review and a Research Agenda. J. Strateg. Inf. Syst. 2019, 28, 118–144. [Google Scholar] [CrossRef]
- Verhoef, P.C.; Broekhuizen, T.; Bart, Y.; Bhattacharya, A.; Dong, J.Q.; Fabian, N.; Haenlein, M. Digital Transformation: A Multidisciplinary Reflection and Research Agenda. J. Bus. Res. 2021, 122, 889–901. [Google Scholar] [CrossRef]
- Kraus, S.; Durst, S.; Ferreira, J.J.; Veiga, P.; Kailer, N.; Weinmann, A. Digital Transformation in Business and Management Research: An Overview of the Current Status Quo. Int. J. Inf. Manag. 2022, 63, 102466. [Google Scholar] [CrossRef]
- Greco, S.; Ishizaka, A.; Tasiou, M.; Torrisi, G. On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness. Soc. Indic. Res. 2019, 141, 61–94. [Google Scholar] [CrossRef]
- Paruolo, P.; Saisana, M.; Saltelli, A. Ratings and Rankings: Voodoo or Science? J. R. Stat. Soc. Ser. A Stat. Soc. 2013, 176, 609–634. [Google Scholar] [CrossRef]
- Frank, A.G.; Dalenogare, L.S.; Ayala, N.F. Industry 4.0 Technologies: Implementation Patterns in Manufacturing Companies. Int. J. Prod. Econ. 2019, 210, 15–26. [Google Scholar] [CrossRef]
- Senna, P.P.; Barros, A.C.; Roca, J.B.; Azevedo, A. Development of a Digital Maturity Model for Industry 4.0 Based on the Technology–Organization–Environment Framework. Comput. Ind. Eng. 2023, 185, 109645. [Google Scholar] [CrossRef]
- Montorsi, C.; Gigliarano, C. Spatial Comprehensive Well-Being Composite Indicators Based on Bayesian Latent Factor Model: Evidence from Italian Provinces. Soc. Indic. Res. 2024, 175, 347–383. [Google Scholar] [CrossRef]
- Mauro, V.; Giusti, C.; Marchetti, S.; Pratesi, M. Does Uncertainty in Single Indicators Affect the Reliability of Composite Indexes? An Application to the Measurement of Environmental Performances of Italian Regions. Ecol. Indic. 2021, 127, 107740. [Google Scholar] [CrossRef]
- Yates, L.A.; Aandahl, Z.; Richards, S.A.; Brook, B.W. Cross Validation for Model Selection: A Review with Examples and a Web Resource. Ecol. Monogr. 2023, 93, e1557. [Google Scholar] [CrossRef]
- Hodson, T.O. Root-Mean-Square Error (RMSE) or Mean Absolute Error (MAE): When to Use Them or Not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Born, J.; Manica, M. Regression Transformer enables concurrent sequence regression and generation for molecular language modelling. Nat. Mach. Intell. 2023, 5, 432–444. [Google Scholar] [CrossRef]
- Yang, Z.; Mitra, A.; Liu, W.; Berlowitz, D.; Yu, H. TransformEHR: Transformer-based encoder–decoder generative model to enhance prediction of disease outcomes using electronic health records. Nat. Commun. 2023, 14, 7857. [Google Scholar] [CrossRef]
- Garriga, R.; Buda, T.S.; Guerreiro, J.; Iglesias, J.O.; Aguerri, I.E.; Matić, A. Combining clinical notes with structured electronic health records enhances the prediction of mental health crises. Cell Rep. Med. 2023, 4, 101260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Y.; Jiang, Y.; Pacella, C.B.; Zhang, W. Integrating structured and unstructured data for predicting emergency severity: An association and predictive study using transformer-based natural language processing models. BMC Med. Inform. Decis. Mak. 2024, 24, 372. [Google Scholar] [CrossRef]
- Rau, F.; Soto, I.; Zabala-Blanco, D.; Azurdia-Meza, C.; Ijaz, M.; Ekpo, S.; Gutierrez, S. A Novel Traffic Prediction Method Using Machine Learning for Energy Efficiency in Service Provider Networks. Sensors 2023, 23, 4997. [Google Scholar] [CrossRef]
- Wibbeke, J.; Alves, D.; Rohjans, S. Estimating time-delayed variables using transformer-based soft sensors. Energy Inform. 2023, 6, 16. [Google Scholar] [CrossRef]
- Gao, Y.; Jafari, R.; Jafari, A.H. Advancing temporal forecasting: A comparative analysis of conventional paradigms and deep learning architectures on publicly accessible datasets. Neural Comput. Appl. 2025, 37, 18173–18184. [Google Scholar] [CrossRef]
- Li, X.; Bian, C.; Li, X.; Yu, S.; Jiang, B. Lamformer: LSTM-enhanced agent attention and mixture-of-experts transformer for efficient stock price prediction. Int. J. Mach. Learn. Cyber. 2025. [Google Scholar] [CrossRef]
- Ullah, A.; Anwar, S.; Li, J.; Nadeem, L.; Mahmood, T.; Rehman, T.; Rehman, A.; Saba, T. Smart cities: The role of Internet of Things and machine learning in realizing a data-centric smart environment. Complex Intell. Syst. 2024, 10, 1607–1637. [Google Scholar] [CrossRef]
- Gupta, P.; Chauhan, S.; Jaiswal, M. Classification of smart city research-a descriptive literature review and future research agenda. Inf. Syst. Front. 2019, 21, 661–685. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Z.; Xu, X.; Li, K. Energy efficiency evaluation of urban infrastructures based on IoT-enabled monitoring and control systems. J. Clean. Prod. 2021, 287, 102717. [Google Scholar] [CrossRef]
- Lawande, S. Smart Energy Systems and Urban Resilience. In Emerging Technologies for Smart Cities; Springer: Berlin/Heidelberg, Germany, 2025. [Google Scholar] [CrossRef]
- Voigt, P.; Von dem Bussche, A. The EU General Data Protection Regulation (GDPR): A Practical Guide; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
Name | Type | Main Dimensions | Application Context |
---|---|---|---|
Digital Transformation Index (Metarius) | Index | Technological infrastructure, Business process digitalization, Leadership and culture, Digital customer experience, Data security and privacy | Private organizations; general benchmarking |
Corporate Digital Transformation Index [23] | Index | Strategic leadership, Technological drive, Organizational empowerment, Environmental support, Digital outcomes, Applied digital technologies | Corporations and firms undergoing digital transformation |
Conceptual Formula [24] | Conceptual Index | Technology, Customers, Human factor, Speed, Value, Need, Communications | Theoretical and exploratory models of DT |
Digital Economy and Society Index (DESI) | Composite Index | Human capital, Connectivity, Integration of digital technologies, Digital public services | EU Member States; national and regional policy assessment |
InAsPro Model [26] | Maturity Model | Technology, Organization, Social aspects, Strategy | Industrial sector; manufacturing firms |
DX-MM Model [27] | Maturity Model | Strategic alignment, Organizational culture, Digital competencies, Business process maturity | General organizational readiness; self-assessment |
BPM-based Model [28] | Maturity Model | Critical success factors, Process structure, Knowledge intensity, Strategic alignment | BPM contexts; knowledge-intensive and complex process environments |
ODTR Model [29] | Maturity Model | Technological, Operational, Leadership, Human, Cultural | Organizational DT readiness; public and private sectors |
Fiber Optic | Copper Links | Radio Link | Intern. Speed | Adeq. Speed | Intern. Redund. | Prop. Infr. | 4G Coverage | DTI |
---|---|---|---|---|---|---|---|---|
1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 50.89 |
1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 50.89 |
1 | 2 | 1 | 2 | 1 | 2 | 3 | 1 | 49.50 |
1 | 2 | 1 | 2 | 1 | 2 | 3 | 1 | 57.91 |
Layer (Type) | Output Shape | Param # |
---|---|---|
dense (Dense) | (None, 128) | 9472 |
dense_1 (Dense) | (None, 64) | 8256 |
dense_2 (Dense) | (None, 32) | 2080 |
dense_3 (Dense) | (None, 1) | 33 |
Total params | 19,841 | |
Trainable params | 19,841 |
Web Text (Excerpt) | DTI |
---|---|
Ajuntament de ajuntament de de los comentarios ajuntament de ical@.es facebook × instagram rss facebook × instagram rss espanol valencia english ajuntament de inicio noticias saluda del alcalde estructura municipal o junta de gobierno local o corporacion municipal o concejalias ordenanzas, tasas e impuestos registro de programas y aiu o agrupacion de interes ur … | 72.88 |
De de de los comentarios de ical de comentario patrimonio cultural del saltar al contenido espanol de menu de menu inicio noticias el la corporacion plenos municipales planes, ordenanzas y reglamentos ayudas recibidas obras y urbanismo tesoreria juzgado de paz centro social biblioteca formacion servicios directorio telefonos transportes informes meteorolo … | 44.19 |
De los comentarios ical saltar al contenido espanol valenciano english menu menu inicio noticias el saluda del alcalde corporacion municipal concejalias informacion al ciudadano o ordenanzas municipales o reglamentos o ofertas y bolsas de empleo o anuncios tramites y gestiones turismo que visitar? eventos rutas turisticas y actividades alojamiento gastronomia pe … | 46.32 |
Ajuntament de ajuntament de de los comentarios ajuntament de ical logo ajuntament de valencia espanol inicio saluda de lalcalde agenda institucional corporacion municipal grupos municipales areas adl agencia de promocio del valencia biblioteca educacion esports juventud medio ambiente omic participacion ciudadana policia local servicios sociales turismo urbani … | 50.91 |
Sensor Category | Examples and Applications |
---|---|
Traffic and Mobility Control | Vehicle counting, ANPR systems, traffic cameras, smart parking sensors, public transport tracking |
Risk and Safety Monitoring | Motion detectors, crowd sensors, fire and flood sensors, weather stations, air quality alerts in risk zones |
Environmental Health Surveillance | Air pollution sensors (NO2, CO, PM2.5), noise monitoring, UV/pollen level detectors, humidity/temperature sensors |
Energy Monitoring and Management | Smart lighting, energy meters in public buildings, solar panel monitors, load balancing, and consumption tracking |
Urban Cleanliness and Waste Management | Fill-level waste sensors, smart recycling points, illegal dumping detectors, gas/temperature sensors in waste containers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lloret, Á.; Peral, J.; Ferrández, A.; Auladell, M.; Muñoz, R. A Data-Driven Framework for Digital Transformation in Smart Cities: Integrating AI, Dashboards, and IoT Readiness. Sensors 2025, 25, 5179. https://doi.org/10.3390/s25165179
Lloret Á, Peral J, Ferrández A, Auladell M, Muñoz R. A Data-Driven Framework for Digital Transformation in Smart Cities: Integrating AI, Dashboards, and IoT Readiness. Sensors. 2025; 25(16):5179. https://doi.org/10.3390/s25165179
Chicago/Turabian StyleLloret, Ángel, Jesús Peral, Antonio Ferrández, María Auladell, and Rafael Muñoz. 2025. "A Data-Driven Framework for Digital Transformation in Smart Cities: Integrating AI, Dashboards, and IoT Readiness" Sensors 25, no. 16: 5179. https://doi.org/10.3390/s25165179
APA StyleLloret, Á., Peral, J., Ferrández, A., Auladell, M., & Muñoz, R. (2025). A Data-Driven Framework for Digital Transformation in Smart Cities: Integrating AI, Dashboards, and IoT Readiness. Sensors, 25(16), 5179. https://doi.org/10.3390/s25165179