A Novel Shape-Prior-Guided Automatic Calibration Method for Free-Hand Three-Dimensional Ultrasonography
Abstract
1. Introduction
2. Materials and Methods
2.1. Probe Calibration Overview
2.2. Feature Point Extraction Method
- (1)
- Feature Point Shape Prior Based on Multi-Scale Hessian Response
- (2)
- Feature Point Filtering Based on N-Wire Structural Prior
- (3)
- Subpixel Center Localization of Feature Points
2.3. Robust Optimization via RANSAC-Assisted Levenberg–Marquardt Algorithm
2.4. Experiment Design
3. Results
3.1. Feature Point Detection Accuracy
3.2. Automatic Calibration Accuracy
3.3. Automatic Calibration Repeatability
3.4. Comparison with Representative Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, T.; Li, J.; Zhang, J.; Ai, D.; Fan, J.; Song, H.; Liang, P.; Yang, J. Four-dimensional wide-field ultrasound reconstruction system with sparse respiratory signal matching. IEEE Trans. Comput. Imaging 2021, 7, 234–247. [Google Scholar] [CrossRef]
- Prager, R.W.; Gee, A.H.; Berman, L. Stradx: Real-time acquisition and visualisation of freehand 3D ultrasound. Med. Image Anal. 1998, 3, 129–140. [Google Scholar] [CrossRef]
- Mozaffari, M.H.; Lee, W.S. Freehand 3-D ultrasound imaging: A systematic review. Ultrasound Med. Biol. 2017, 43, 2099–2124. [Google Scholar] [CrossRef]
- Mercier, L.; Langø, T.; Lindseth, F.; Collins, D.L. A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound Med. Biol. 2005, 31, 449–471. [Google Scholar] [CrossRef]
- Carbajal, G.; Lasso, A.; Gómez, Á.; Fichtinger, G. Improving N-wire phantom-based freehand ultrasound calibration. Int. J. Comput. Assist. Radiol. Surg. 2013, 8, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Pagoulatos, N.; Haynor, D.R.; Kim, Y. A fast calibration method for 3-D tracking of ultrasound images using a spatial localizer. Ultrasound Med. Biol. 2001, 27, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Lindseth, F.; Tangen, G.A.; Langø, T.; Bang, J. Probe calibration for freehand 3-D ultrasound. Ultrasound Med. Biol. 2003, 29, 1607–1623. [Google Scholar] [CrossRef]
- Chen, T.K.; Thurston, A.D.; Ellis, R.E.; Abolmaesumi, P. A real-time freehand ultrasound calibration system with automatic accuracy feedback and control. Ultrasound Med. Biol. 2009, 35, 79–93. [Google Scholar] [CrossRef]
- Wen, T.; Wang, C.; Zhang, Y.; Zhou, S. A novel ultrasound probe spatial calibration method using a combined phantom and stylus. Ultrasound Med. Biol. 2020, 46, 2079–2089. [Google Scholar] [CrossRef]
- Trobaugh, J.W.; Richard, W.D.; Smith, K.R.; Bucholz, R.D. Frameless stereotactic ultrasonography: Method and applications. Comput. Med. Imaging Graph. 1994, 18, 235–246. [Google Scholar] [CrossRef]
- Comeau, R.M.; Fenster, A.; Peters, T.M. Integrated MR and ultrasound imaging for improved image guidance in neurosurgery. In Medical Imaging 1998: Image Processing; SPIE: Bellingham, WA, USA, June 1998; Volume 3338, pp. 747–754. [Google Scholar]
- Wu, C.; Fu, T.; Chen, X.; Xiao, J.; Ai, D.; Fan, J.; Lin, Y.; Song, H.; Yang, J. Automatic spatial calibration of freehand ultrasound probe with a multilayer N-wire phantom. Ultrasonics 2023, 128, 106862. [Google Scholar] [CrossRef]
- Lei, L.; Zhao, B.; Qi, X.; Mi, R.; Ye, H.; Zhang, P.; Wang, Q.; Heng, P.; Hu, Y. Robotic needle insertion with 2D ultrasound–3D CT fusion guidance. IEEE Trans. Autom. Sci. Eng. 2023, 21, 6152–6164. [Google Scholar] [CrossRef]
- Mathieu, B.; Claire, C.; Lorenzo, L.; Arturo, V. Temporal and Spatial Calibration of a freehand 3D ultrasound reconstructions system by using an N-wire phantom. In Proceedings of the 2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 28–30 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–7. [Google Scholar]
- Prager, R.W.; Rohling, R.N.; Gee, A.H.; Berman, L. Rapid calibration for 3-D freehand ultrasound. Ultrasound Med. Biol. 1998, 24, 855–869. [Google Scholar] [CrossRef]
- Langø, T. Ultrasound Guided Surgery: Image Processing and Navigation; Norwegian University of Science and Technology: Trondheim, Norway, 2000. [Google Scholar]
- Ayadi, A.; Nicolau, S.; Bayle, B.; Graebling, P.; Gangloff, J. Fully automatic needle calibration for robotic-assisted puncture on small animals. In Proceedings of the 2007 IEEE/NIH Life Science Systems and Applications Workshop, Bethesda, MD, USA, 8–9 November 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 85–88. [Google Scholar]
- Chen, E.C.; Lasso, A.; Fichtinger, G. External tracking devices and tracked tool calibration. In Handbook of Medical Image Computing and Computer Assisted Intervention; Academic Press: Cambridge, MA, USA, 2020; pp. 777–794. [Google Scholar]
- Shen, C.; Lyu, L.; Wang, G.; Wu, J. A method for ultrasound probe calibration based on arbitrary wire phantom. Cogent Eng. 2019, 6, 1592739. [Google Scholar] [CrossRef]
- Li, R.; Niu, K.; Vander Poorten, E. A framework for fast automatic robot ultrasound calibration. In Proceedings of the 2021 International Symposium on Medical Robotics (ISMR), Atlanta, GA, USA, 17–19 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7. [Google Scholar]
- Li, R.; Cai, Y.; Niu, K.; Vander Poorten, E. Comparative quantitative analysis of robotic ultrasound image calibration methods. In Proceedings of the 2021 20th International Conference on Advanced Robotics (ICAR), Ljubljana, Slovenia, 6–10 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 511–516. [Google Scholar]
- Suthakorn, J.; Chatrasingh, M.; Wiratkapun, C.; Ongwattanakul, S. M-fiducial phantom based fast automatic ultrasound calibration technique: A novel approach for 2D to 3D image registration. Heliyon 2024, 10, e40290. [Google Scholar] [CrossRef]
- Oliveira, J.; Coelho, R.M.; Carvalho, H.; Martins, J. A Calibration Procedure for Robotic Ultrasound Systems. IEEE Trans. Med. Robot. Bionics 2025, 7, 793–801. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory in numerical analysis. Lect. Notes Math. 1977, 630, 105–116. [Google Scholar]
- Bay, H.; Tuytelaars, T.; Van Gool, L. Surf: Speeded up robust features. In Proceedings of the Computer Vision–ECCV 2006: 9th European Conference on Computer Vision 2006, Graz, Austria, 7–13 May 2006; Proceedings, Part I 9. Springer: Berlin Heidelberg, Germany, 2006; pp. 404–417. [Google Scholar]
- Lindeberg, T. Feature detection with automatic scale selection. Int. J. Comput. Vis. 1998, 30, 79–116. [Google Scholar] [CrossRef]
- Hartley, R. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003; Volume 665. [Google Scholar]
- Ezra, E.; Sharir, M.; Efrat, A. On the performance of the ICP algorithm. Comput. Geom. 2008, 41, 77–93. [Google Scholar] [CrossRef]
- Rong, J.; Lu, Y.; Qin, S.; Zeng, R. Geometric calibration of freehand ultrasound system with electromagnetic tracking. Acad. J. Comput. Inf. Sci. 2020, 3, 117–128. [Google Scholar]
Ultrasound System | Probe Type | Depth (cm) | Recognition Rate (%) | Processing Time (s) |
---|---|---|---|---|
NeuBook3 | Convex array | 5 | 97.333 | 11.06945 |
8 | 98.333 | 12.37848 | ||
12 | 98.215 | 12.19984 | ||
Linear array | 5 | 98.333 | 9.84532 | |
8 | 97.667 | 10.26384 | ||
12 | 99.000 | 10.78921 | ||
Philips EPIQ 5 | Convex array | 5 | 98.667 | 9.4497 |
8 | 97.000 | 12.2214 | ||
12 | 98.667 | 14.3551 | ||
Linear array | 5 | 93.333 | 11.2395 | |
8 | 94.215 | 15.7213 | ||
12 | 98.215 | 10.2704 |
Top-Hat Transformation | Multi-Scale Hessian | Geometric Constraint | Depth (cm) | Recognition Rate (%) | False Detection Rate (%) |
---|---|---|---|---|---|
√ | √ | √ | 5 | 97.333 | / |
12 | 98.215 | / | |||
√ | √ | 5 | 94.000 | 1.050 | |
12 | 80.333 | 2.083 | |||
√ | √ | 5 | 87.333 | 10.344 | |
12 | 86.000 | 10.417 |
L-M | RANSAC | Depth (cm) | Mean (mm) | Max (mm) |
---|---|---|---|---|
√ | √ | 5 | 0.4979 | 0.6196 |
8 | 0.4986 | 0.5618 | ||
10 | 0.5709 | 0.7580 | ||
12 | 0.5241 | 0.5419 | ||
√ | 5 | 0.7297 | 0.8154 | |
8 | 0.7458 | 0.7789 | ||
10 | 0.8679 | 0.9958 | ||
12 | 0.8879 | 1.0214 |
Depth (cm) | Mean (mm) | Max (mm) | Min (mm) |
---|---|---|---|
5 | 1.121 | 2.2330 | 0.5601 |
8 | 1.672 | 2.1047 | 1.4250 |
10 | 1.385 | 1.7384 | 0.5061 |
12 | 1.092 | 1.3952 | 0.7866 |
Data Group | Method | Recognition Rate (%) | False Detection Rate (%) | Processing Time (s) |
---|---|---|---|---|
1 | Ours | 100 | 0 | 8.87 |
AGC-FD | 90.69 | 8.23 | 7.31 | |
TACD | 94.63 | 5.37 | 7.06 | |
2 | Ours | 96.43 | 0 | 9.38 |
AGC-FD | 89.84 | 9.79 | 7.49 | |
TACD | 90.29 | 8.33 | 7.25 | |
3 | Ours | 98.04 | 0 | 6.35 |
AGC-FD | 94.81 | 5.81 | 4.52 | |
TACD | 95.30 | 4.69 | 4.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.-Y.; Zhao, J.-X.; Tang, H.; Zhou, G.-Q. A Novel Shape-Prior-Guided Automatic Calibration Method for Free-Hand Three-Dimensional Ultrasonography. Sensors 2025, 25, 5104. https://doi.org/10.3390/s25165104
Liu X-Y, Zhao J-X, Tang H, Zhou G-Q. A Novel Shape-Prior-Guided Automatic Calibration Method for Free-Hand Three-Dimensional Ultrasonography. Sensors. 2025; 25(16):5104. https://doi.org/10.3390/s25165104
Chicago/Turabian StyleLiu, Xing-Yang, Jia-Xu Zhao, Hui Tang, and Guang-Quan Zhou. 2025. "A Novel Shape-Prior-Guided Automatic Calibration Method for Free-Hand Three-Dimensional Ultrasonography" Sensors 25, no. 16: 5104. https://doi.org/10.3390/s25165104
APA StyleLiu, X.-Y., Zhao, J.-X., Tang, H., & Zhou, G.-Q. (2025). A Novel Shape-Prior-Guided Automatic Calibration Method for Free-Hand Three-Dimensional Ultrasonography. Sensors, 25(16), 5104. https://doi.org/10.3390/s25165104