Prediction of Soil Properties Using Vis-NIR Spectroscopy Combined with Machine Learning: A Review
Abstract
1. Introduction
2. Research Methodology
3. Visible–Near-Infrared Reflectance Spectroscopy
4. Preprocessing Spectral Data
4.1. Denoising
4.2. Scattering Correction
4.3. Baseline Correction
4.4. Scaling
5. Determination of Wavelength Range
5.1. Theory-Based Determination
5.2. Data-Based Determination
Nutrients | Wavelength Selection | Selected Wavelength (nm) | Reference |
---|---|---|---|
Available K | SPA | 400–421, 996, 1350, 1351, 1680, 2372, 2448 | [17] |
Available P | 400–436, around 1000, 1325–1417, 1604, 1659, 1835~1946, 2355–2450 | ||
Soil organic matter | 405–442, 543~788, around 1000, 1295, 1835–1934, 2210 | ||
Available K | CARS | 405–483, around 728, 967~1031, 1271–1409, 1643–1789, 1975–2004, 2109–2174, 2312–2449 | |
Available P | 400–450, 1005–1083, 1292–1358, around 1577, 1964–2044, 2113–2216, 2381–2421 | ||
Soil organic matter | 411~508, 984–1028, around 1233, 1347–1358, 1608~1620, around 1836, 1930–2052, 2309–2448 | ||
Organic carbon | CARS-PLSR | 450, 520–535, 560–575, 630–640, 1895–1905, 2210, 2495–2500 | [90] |
Nitrogen | 515, 570–575, 660–665, 1880–1890, 2205–2210 | ||
Available K | SPA | 400–543, 709–800, 1230–1384, 1558–1730, 3330–3990 | [88] |
SA | 449–876, 1359–1442, 2158–2420, 2864–3498, 3618–3982 | ||
CARS | 715–873, 1024–1263, 1406–1629, 3012–3334, 3595–3732 |
6. Machine Learning Algorithms for Predicting Soil Properties
7. Application of Vis-NIR Spectroscopy for Prediction of Soil Properties
7.1. Soil Water Content
7.2. Soil Organic and Inorganic Carbon
7.3. Soil Nutrients
8. Field Applications of Vis-NIR Spectroscopy for Soil Nutrient Management
9. Challenges and Prospects of Vis-NIR Spectroscopy Combined with Machine Learning for Soil Nutrient Prediction
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1D | First-order derivative |
2D | Second-order derivative |
AK | Available potassium |
ANN | Artificial neural network |
AP | Available phosphorus |
BPNN | Backpropagation neural network |
CARS | Competitive adaptive reweighted sampling |
CNN | Convolutional neural network |
CR | Continuum removal |
ELM | Extreme learning machine |
GBRT | Gradient boosting regression trees |
MSC | Multiplicative scatter correction |
NOR | Normalization |
PCA | Principal component analysis |
PLSR | Partial least-squares regression |
R2 | Coefficient of determination |
RMSE | Root mean square error |
RPD | Residual predictive deviation |
RPIQ | Ratio of performance to interquartile distance |
SG | Savitzky–Golay filter |
SIC | Soil inorganic carbon |
SNV | Standard normal variate |
SOC | Soil organic carbon |
SVM | Support vector machine |
SVMR | Support vector machine regression |
TN | Total nitrogen |
Vis-NIR | Visible and near-infrared |
XGBoost | Extreme gradient boost |
References
- Mukherjee, S.; Laskar, S. Vis–NIR-based optical sensor system for estimation of primary nutrients in soil. J. Opt. 2019, 48, 87–103. [Google Scholar] [CrossRef]
- Osman, K.T. Plant nutrients and soil fertility management. In Soils: Principles, Properties and Management; Springer: Dordrecht, The Netherlands, 2012; pp. 129–159. [Google Scholar] [CrossRef]
- Ameer, S.; Ibrahim, H.; Kulsoom, F.; Ameer, G.; Sher, M. Real-time detection and measurements of nitrogen, phosphorous & potassium from soil samples: A comprehensive review. J. Soils Sed. 2024, 24, 2565–2583. [Google Scholar] [CrossRef]
- Karthika, K.; Rashmi, I.; Parvathi, M. Biological functions, uptake and transport of essential nutrients in relation to plant growth. In Plant Nutrients and Abiotic Stress Tolerance; Springer Nature Singapore Pte Ltd.: Singapore, 2018; pp. 1–49. [Google Scholar] [CrossRef]
- Park, J.H.; Sung, J. Comparison of various EC sensors for monitoring soil temperature, water content, and EC, and Its relation to ion contents in agricultural soils. J. Soil Groundw. Environ. 2021, 26, 157–164. [Google Scholar] [CrossRef]
- Sin, S.K.; Kim, J.Y.; Park, J.H. Evaluation of Plant Available Nutrient Levels Using EC Monitored by Sensor in Pepper and Broccoli Soil. J. Bio-Environ. Control 2023, 32, 328–335. [Google Scholar] [CrossRef]
- Singha, C.; Swain, K.C.; Sahoo, S.; Govind, A. Prediction of soil nutrients through PLSR and SVMR models by VIs-NIR reflectance spectroscopy. Egypt. J. Remote Sens. Space Sci. 2023, 26, 901–918. [Google Scholar] [CrossRef]
- Tavakoli, H.; Correa, J.; Sabetizade, M.; Vogel, S. Predicting key soil properties from Vis-NIR spectra by applying dual-wavelength indices transformations and stacking machine learning approaches. Soil Tillage Res. 2023, 229, 105684. [Google Scholar] [CrossRef]
- Adejumo, G.; Bulmer, D.; Sorenson, P.; Peak, D. Soil organic carbon measurements influence FT-NIR model training in calcareous soils of Saskatchewan. Soil Sci. Soc. Am. J. 2025, 89, e70034. [Google Scholar] [CrossRef]
- Mohamed, E.; Saleh, A.; Belal, A.; Gad, A.A. Application of near-infrared reflectance for quantitative assessment of soil properties. Egypt. J. Remote Sens. Space Sci. 2018, 21, 1–14. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Janik, L.J.; Viscarra Rossel, R.A.; Macdonald, L.M.; McLaughlin, M.J. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl. Spectrosc. Rev. 2014, 49, 139–186. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. Interpretability in near-infrared (NIR) spectroscopy: Current pathways to the long-standing challenge. TrAC Trends Anal. Chem. 2025, 189, 118254. [Google Scholar] [CrossRef]
- Zhou, P.; Li, M.; Yang, W.; Yao, X.; Liu, Z.; Ji, R. Development and performance tests of an on-the-go detector of soil total nitrogen concentration based on near-infrared spectroscopy. Precis. Agric. 2021, 22, 1479–1500. [Google Scholar] [CrossRef]
- An, X.; Li, M.; Zheng, L.; Liu, Y.; Sun, H. A portable soil nitrogen detector based on NIRS. Precis. Agric. 2014, 15, 3–16. [Google Scholar] [CrossRef]
- Devianti, S.; Bulan, R.; Sitorus, A. Vis-NIR spectra combined with machine learning for predicting soil nutrients in cropland from Aceh Province, Indonesia. Case Stud. Chem. Environ. Eng. 2022, 6, 100268. [Google Scholar] [CrossRef]
- Xu, S.; Zhao, Y.; Wang, M.; Shi, X. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy. Geoderma 2018, 310, 29–43. [Google Scholar] [CrossRef]
- Guo, P.; Li, T.; Gao, H.; Chen, X.; Cui, Y.; Huang, Y. Evaluating calibration and spectral variable selection methods for predicting three soil nutrients using Vis-NIR spectroscopy. Remote Sens. 2021, 13, 4000. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, J.; Du, Y. Combining multivariate method and spectral variable selection for soil total nitrogen estimation by Vis–NIR spectroscopy. Arch. Agron. Soil Sci. 2021, 67, 1665–1678. [Google Scholar] [CrossRef]
- Morellos, A.; Pantazi, X.-E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebensohn, J.; Bill, R.; Mouazen, A.M. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Bios. Eng. 2016, 152, 104–116. [Google Scholar] [CrossRef]
- Li, H.; Jia, S.; Le, Z. Quantitative analysis of soil total nitrogen using hyperspectral imaging technology with extreme learning machine. Sensors 2019, 19, 4355. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Zheng, L.; Zhao, Y.; Pei, X. Soil nitrogen content forecasting based on real-time NIR spectroscopy. Comput. Electron. Agric. 2016, 124, 29–36. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, Y.; Yang, W.; Li, M.; Liu, Z.; Liu, X. Development and performance test of an in-situ soil total nitrogen-soil moisture detector based on near-infrared spectroscopy. Comput. Electron. Agric. 2019, 160, 51–58. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Kuang, B. On-line visible and near infrared spectroscopy for in-field phosphorous management. Soil Tillage Res. 2016, 155, 471–477. [Google Scholar] [CrossRef]
- Jain, S.; Sethia, D.; Tiwari, K.C. A critical systematic review on spectral-based soil nutrient prediction using machine learning. Environ. Monit. Assess. 2024, 196, 699. [Google Scholar] [CrossRef]
- Barra, I.; Haefele, S.M.; Sakrabani, R.; Kebede, F. Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advances—A review. TrAC Trends Anal. Chem. 2021, 135, 116166. [Google Scholar] [CrossRef]
- Czarnecki, M.A.; Morisawa, Y.; Futami, Y.; Ozaki, Y. Advances in molecular structure and interaction studies using near-infrared spectroscopy. Chem. Rev. 2015, 115, 9707–9744. [Google Scholar] [CrossRef]
- Ozaki, Y.; Huck, C.; Tsuchikawa, S.; Engelsen, S.B. Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications; Springer Nature Singapore Pte Ltd.: Singapore, 2020. [Google Scholar] [CrossRef]
- Pasquini, C. Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. J. Braz. Chem. Soc. 2003, 14, 198–219. [Google Scholar] [CrossRef]
- Barstow, T.J. Understanding near infrared spectroscopy and its application to skeletal muscle research. J. Appl. Physiol. 2019, 126, 1360–1376. [Google Scholar] [CrossRef] [PubMed]
- Revilla, I.; Lastras, C.; González-Martín, M.I.; Vivar-Quintana, A.M.; Morales-Corts, R.; Gómez-Sánchez, M.; Pérez-Sánchez, R. Predicting the physicochemical properties and geographical ORIGIN of lentils using near infrared spectroscopy. J. Food Compos. Anal. 2019, 77, 84–90. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. Near-infrared spectroscopy in bio-applications. Molecules 2020, 25, 2948. [Google Scholar] [CrossRef]
- Biswas, A.; Chaudhari, S.R. Exploring the role of NIR spectroscopy in quantifying and verifying honey authenticity: A review. Food Chem. 2024, 445, 138712. [Google Scholar] [CrossRef]
- Pal, A.; Dubey, S.K.; Goel, S.; Kalita, P.K. Portable sensors in precision agriculture: Assessing advances and challenges in soil nutrient determination. TrAC Trends Anal. Chem. 2024, 180, 117981. [Google Scholar] [CrossRef]
- Kashyap, B.; Kumar, R. Sensing methodologies in agriculture for soil moisture and nutrient monitoring. IEEE Access 2021, 9, 14095–14121. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Dong, L.; Dhau, J.; Khosla, A.; Kaushik, A. Perspective—Electrochemical sensors for soil quality assessment. J. Electrochem. Soc. 2020, 167, 037550. [Google Scholar] [CrossRef]
- Van Sundert, K.; Radujković, D.; Cools, N.; De Vos, B.; Etzold, S.; Fernández-Martínez, M.; Janssens, I.A.; Merilä, P.; Peñuelas, J.; Sardans, J. Towards comparable assessment of the soil nutrient status across scales—Review and development of nutrient metrics. Glob. Change Biol. 2020, 26, 392–409. [Google Scholar] [CrossRef]
- Burton, L.; Jayachandran, K.; Bhansali, S. The “Real-Time” revolution for in situ soil nutrient sensing. J. Electrochem. Soc. 2020, 167, 037569. [Google Scholar] [CrossRef]
- Potdar, R.P.; Shirolkar, M.M.; Verma, A.J.; More, P.S.; Kulkarni, A. Determination of soil nutrients (NPK) using optical methods: A mini review. J. Plant Nutr. 2021, 44, 1826–1839. [Google Scholar] [CrossRef]
- Houhou, R.; Bocklitz, T. Trends in artificial intelligence, machine learning, and chemometrics applied to chemical data. Anal. Sci. Adv. 2021, 2, 128–141. [Google Scholar] [CrossRef]
- Wang, H.-P.; Chen, P.; Dai, J.-W.; Liu, D.; Li, J.-Y.; Xu, Y.-P.; Chu, X.-L. Recent advances of chemometric calibration methods in modern spectroscopy: Algorithms, strategy, and related issues. TrAC Trends Anal. Chem. 2022, 153, 116648. [Google Scholar] [CrossRef]
- Yang, L.; Sun, Q. Comparison of chemometric approaches for near-infrared spectroscopic data. Anal. Methods 2016, 8, 1914–1923. [Google Scholar] [CrossRef]
- Jiang, C.; Zhao, J.; Li, G. Integration of Vis–NIR spectroscopy and machine learning techniques to predict eight soil parameters in Alpine Regions. Agronomy 2023, 13, 2816. [Google Scholar] [CrossRef]
- Xu, X.; Xie, L.; Ying, Y. Factors influencing near infrared spectroscopy analysis of agro-products: A review. Front. Agric. Sci. Eng. 2019, 6, 105–115. [Google Scholar] [CrossRef]
- Engel, J.; Gerretzen, J.; Szymańska, E.; Jansen, J.J.; Downey, G.; Blanchet, L.; Buydens, L.M. Breaking with trends in pre-processing? TrAC Trends Anal. Chem. 2013, 50, 96–106. [Google Scholar] [CrossRef]
- Bian, X.; Wang, K.; Tan, E.; Diwu, P.; Zhang, F.; Guo, Y. A selective ensemble preprocessing strategy for near-infrared spectral quantitative analysis of complex samples. Chemom. Intellig. Lab. Syst. 2020, 197, 103916. [Google Scholar] [CrossRef]
- Vestergaard, R.-J.; Vasava, H.B.; Aspinall, D.; Chen, S.; Gillespie, A.; Adamchuk, V.; Biswas, A. Evaluation of optimized preprocessing and modeling algorithms for prediction of soil properties using vis-nir spectroscopy. Sensors 2021, 21, 6745. [Google Scholar] [CrossRef]
- Mishra, P.; Biancolillo, A.; Roger, J.M.; Marini, F.; Rutledge, D.N. New data preprocessing trends based on ensemble of multiple preprocessing techniques. TrAC Trends Anal. Chem. 2020, 132, 116045. [Google Scholar] [CrossRef]
- Roger, J.-M.; Mallet, A.; Marini, F. Preprocessing NIR spectra for aquaphotomics. Molecules 2022, 27, 6795. [Google Scholar] [CrossRef]
- Lin, C.; Liu, S.; Fang, Z.; Yang, Y. Spectrum analysis of moving average operator and construction of time-frequency hybrid sequence operator. Grey Syst. Theory Appl. 2022, 12, 101–116. [Google Scholar] [CrossRef]
- Al-Mbaideen, A.A. Application of moving average filter for the quantitative analysis of the NIR spectra. J. Anal. Chem. 2019, 74, 686–692. [Google Scholar] [CrossRef]
- Ditcharoen, S.; Sirisomboon, P.; Saengprachatanarug, K.; Phuphaphud, A.; Rittiron, R.; Terdwongworakul, A.; Malai, C.; Saenphon, C.; Panduangnate, L.; Posom, J. Improving the non-destructive maturity classification model for durian fruit using near-infrared spectroscopy. Artif. Intell. Agric. 2023, 7, 35–43. [Google Scholar] [CrossRef]
- Zhang, W.; Kasun, L.C.; Wang, Q.J.; Zheng, Y.; Lin, Z. A review of machine learning for near-infrared spectroscopy. Sensors 2022, 22, 9764. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Yao, L.; Pan, T. Visible and near-infrared spectroscopy with multi-parameters optimization of Savitzky-Golay smoothing applied to rapid analysis of soil Cr content of Pearl River Delta. J. Geosci. Environ. Prot. 2021, 9, 75. [Google Scholar] [CrossRef]
- Xu, M.; Chu, X.; Fu, Y.; Wang, C.; Wu, S. Improving the accuracy of soil organic carbon content prediction based on visible and near-infrared spectroscopy and machine learning. Environ. Earth Sci. 2021, 80, 326. [Google Scholar] [CrossRef]
- Heil, K.; Schmidhalter, U. An evaluation of different NIR-spectral pre-treatments to derive the soil parameters C and N of a humus-clay-rich soil. Sensors 2021, 21, 1423. [Google Scholar] [CrossRef]
- Bian, X.; Ling, M.; Chu, Y.; Liu, P.; Tan, X. Spectral denoising based on Hilbert–Huang transform combined with F-test. Front. Chem. 2022, 10, 949461. [Google Scholar] [CrossRef]
- Yu, J.; Guo, K.; Yuan, X.; Fu, W.; Xun, Z. Wavelet denoising of well logs and its geological performance. Energy Explor. Exploit. 2010, 28, 87–95. [Google Scholar] [CrossRef]
- Kusuma, C.; Dharumarajan, S.; Vasundhara, R.; Gomez, C.; Manjunatha, M.; Hegde, R. Predicting Soil Nutrient Classes Using Vis–NIR Spectroscopy to Support Sustainable Farming Decisions. Land Degrad. Dev. 2025. [CrossRef]
- Bi, Y.; Yuan, K.; Xiao, W.; Wu, J.; Shi, C.; Xia, J.; Chu, G.; Zhang, G.; Zhou, G. A local pre-processing method for near-infrared spectra, combined with spectral segmentation and standard normal variate transformation. Anal. Chim. Acta 2016, 909, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, S.; Bowler, A.; Rady, A.; Watson, N.J. Near-infrared spectroscopy and machine learning for classification of food powders during a continuous process. J. Food Eng. 2023, 341, 111339. [Google Scholar] [CrossRef]
- Huang, J.; Romero-Torres, S.; Moshgbar, M. Raman: Practical considerations in data pre-treatment for Nir and Raman spectroscopy. Am. Pharm. Rev. 2010, 13, 116. [Google Scholar]
- Hayati, R.; Zulfahrizal, Z.; Munawar, A.A. Robust prediction performance of inner quality attributes in intact cocoa beans using near infrared spectroscopy and multivariate analysis. Heliyon 2021, 7, e06286. [Google Scholar] [CrossRef]
- Wight, J.P.; Ashworth, A.J.; Allen, F.L. Organic substrate, clay type, texture, and water influence on NIR carbon measurements. Geoderma 2016, 261, 36–43. [Google Scholar] [CrossRef]
- Masithoh, R.E.; Roosmayanti, F.; Rismiwandira, K.; Pahlawan, M.F.R. Detection of palm sugar adulteration by Fourier transform near-infrared (FT-NIR) and Fourier Transform Infrared (FT-IR) spectroscopy. Sugar Tech 2022, 24, 920–929. [Google Scholar] [CrossRef]
- Rinnan, Å.; Van Den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Liu, J.; Xie, J.; Han, J.; Wang, H.; Sun, J.; Li, R.; Li, S. Visible and near-infrared spectroscopy with chemometrics are able to predict soil physical and chemical properties. J. Soils Sed. 2020, 20, 2749–2760. [Google Scholar] [CrossRef]
- Rahmawati, L.; Zahra, A.M.; Listanti, R.; Masithoh, R.E.; Hariadi, H.; Adnan; Syafutri, M.I.; Lidiasari, E.; Amdani, R.Z.; Puspitahati. Necessity of Log (1/R) and Kubelka-Munk transformation in chemometrics analysis to predict white rice flour adulteration in brown rice flour using visible-near-infrared spectroscopy. Food Sci. Technol. 2023, 43, e116422. [Google Scholar] [CrossRef]
- Li, L.; Peng, Y.; Li, Y.; Wang, F. A new scattering correction method of different spectroscopic analysis for assessing complex mixtures. Anal. Chim. Acta 2019, 1087, 20–28. [Google Scholar] [CrossRef]
- Wan, X.; Li, G.; Zhang, M.; Yan, W.; He, G.; Awelisah, Y.M.; Lin, L. A review on the strategies for reducing the non-linearity caused by scattering on spectrochemical quantitative analysis of complex solutions. Appl. Spectrosc. Rev. 2020, 55, 351–377. [Google Scholar] [CrossRef]
- Zhang, F.; Tang, X.; Li, L. Origins of baseline drift and distortion in Fourier transform spectra. Molecules 2022, 27, 4287. [Google Scholar] [CrossRef]
- Delgadillo-Duran, D.A.; Vargas-García, C.A.; Varón-Ramírez, V.M.; Calderón, F.; Montenegro, A.C.; Reyes-Herrera, P.H. Vis–NIR spectroscopy and machine learning methods to diagnose chemical properties in Colombian sugarcane soils. Geoderma Reg. 2022, 31, e00588. [Google Scholar] [CrossRef]
- Guo, J.; Huang, H.; He, X.; Cai, J.; Zeng, Z.; Ma, C.; Lü, E.; Shen, Q.; Liu, Y. Improving the detection accuracy of the nitrogen content of fresh tea leaves by combining FT-NIR with moisture removal method. Food Chem. 2023, 405, 134905. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, S.; Zhang, Y.; Chen, Y.; Yu, L.; Liu, Y.; Liu, Y.; Cheng, H.; Liu, Y. Rapid identification of soil organic matter level via visible and near-infrared spectroscopy: Effects of two-dimensional correlation coefficient and extreme learning machine. Sci. Total Environ. 2018, 644, 1232–1243. [Google Scholar] [CrossRef]
- Lao, C.; Zhang, Z.; Chen, J.; Chen, H.; Yao, Z.; Xing, Z.; Tai, X.; Ning, J.; Chen, Y. Determination of in-situ salinized soil moisture content from visible-near infrared (VIS–NIR) spectroscopy by fractional order derivative and spectral variable selection algorithms. Int. J. Precis. Agric. Aviat. 2020, 3, 21–34. [Google Scholar] [CrossRef]
- Gholizadeh, A.; BORŮVKA, L.; Saberioon, M.M.; Kozák, J.; Vašát, R.; Němeček, K. Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features. Soil Water Res. 2015, 10, 218–227. [Google Scholar] [CrossRef]
- Clingensmith, C.M.; Grunwald, S. Predicting soil properties and interpreting Vis-NIR models from across continental United States. Sensors 2022, 22, 3187. [Google Scholar] [CrossRef]
- Rathod, P.H.; Müller, I.; Van der Meer, F.D.; de Smeth, B. Analysis of visible and near infrared spectral reflectance for assessing metals in soil. Environ. Monit. Assess. 2016, 188, 558. [Google Scholar] [CrossRef]
- Giguere, S.; Boucher, T.; Carey, C.; Mahadevan, S.; Dyar, M.D. A fully customized baseline removal framework for spectroscopic applications. Appl. Spectrosc. 2017, 71, 1457–1470. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, R.; Chen, K. Prediction of firmness parameters of tomatoes by portable visible and near-infrared spectroscopy. J. Food Eng. 2018, 222, 185–198. [Google Scholar] [CrossRef]
- Patro, S.; Sahu, K.K. Normalization: A preprocessing stage. arXiv 2015, arXiv:1503.06462. [Google Scholar] [CrossRef]
- Liu, X.; Fang, Y.; Ma, H.; Zhang, N.; Li, C. Performance comparison of three scaling algorithms in NMR-based metabolomics analysis. Open Life Sci. 2023, 18, 20220556. [Google Scholar] [CrossRef]
- Erny, G.L.; Brito, E.; Pereira, A.B.; Bento-Silva, A.; Patto, M.C.V.; Bronze, M.R. Projection to latent correlative structures, a dimension reduction strategy for spectral-based classification. RSC Adv. 2021, 11, 29124–29129. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. Physical principles of infrared spectroscopy. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2022; Volume 98, pp. 1–43. [Google Scholar] [CrossRef]
- Dutta, A. Fourier transform infrared spectroscopy. Spectrosc. Methods Nanomater. Charact. 2017, 2, 73–93. [Google Scholar] [CrossRef]
- Beattie, J.R.; Esmonde-White, F.W. Exploration of principal component analysis: Deriving principal component analysis visually using spectra. Appl. Spectrosc. 2021, 75, 361–375. [Google Scholar] [CrossRef]
- dos Santos Canova, L.; Vallese, F.D.; Pistonesi, M.F.; de Araújo Gomes, A. An improved successive projections algorithm version to variable selection in multiple linear regression. Anal. Chim. Acta 2023, 1274, 341560. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Li, Z.; Liu, Q.; Feng, W.; Chen, Y.; Jiang, H.; Liang, H.; Chang, N. Fourier-transform infrared spectral inversion of soil available potassium content based on different dimensionality reduction algorithms. Agronomy 2023, 13, 617. [Google Scholar] [CrossRef]
- Sánchez-Esteva, S.; Knadel, M.; Kucheryavskiy, S.; de Jonge, L.W.; Rubæk, G.H.; Hermansen, C.; Heckrath, G. Combining laser-induced breakdown spectroscopy (LIBS) and visible near-infrared spectroscopy (Vis-NIRS) for soil phosphorus determination. Sensors 2020, 20, 5419. [Google Scholar] [CrossRef]
- Vohland, M.; Ludwig, M.; Thiele-Bruhn, S.; Ludwig, B. Determination of soil properties with visible to near-and mid-infrared spectroscopy: Effects of spectral variable selection. Geoderma 2014, 223, 88–96. [Google Scholar] [CrossRef]
- Diaz-Gonzalez, F.A.; Vuelvas, J.; Correa, C.A.; Vallejo, V.E.; Patino, D. Machine learning and remote sensing techniques applied to estimate soil indicators–review. Ecol. Indic. 2022, 135, 108517. [Google Scholar] [CrossRef]
- Zhao, D.; Arshad, M.; Wang, J.; Triantafilis, J. Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: Effects of multiple calibration models and spiking. Comput. Electron. Agric. 2021, 182, 105990. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst. Appl. 2019, 134, 93–101. [Google Scholar] [CrossRef]
- Xu, D.; Chen, S.; Zhou, Y.; Ji, W.; Shi, Z. Spatial Estimation of Soil Organic Matter and Total Nitrogen by Fusing Field Vis–NIR Spectroscopy and Multispectral Remote Sensing Data. Remote Sens. 2025, 17, 729. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 2016, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Ding, S.; Zhao, H.; Zhang, Y.; Xu, X.; Nie, R. Extreme learning machine: Algorithm, theory and applications. Artif. Intell. Rev. 2015, 44, 103–115. [Google Scholar] [CrossRef]
- Pouladi, N.; Møller, A.B.; Tabatabai, S.; Greve, M.H. Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging. Geoderma 2019, 342, 85–92. [Google Scholar] [CrossRef]
- Moayedi, H.; Mosallanezhad, M.; Rashid, A.S.A.; Jusoh, W.A.W.; Muazu, M.A. A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: Theory and applications. Neural Comput. Appl. 2020, 32, 495–518. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peerj Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, Y.; Wang, M. Prediction of soil organic carbon and total nitrogen affected by mine using Vis–NIR spectroscopy coupled with machine learning algorithms in calcareous soils. Sci. Rep. 2024, 14, 28014. [Google Scholar] [CrossRef]
- Bai, Z.; Chen, S.; Hong, Y.; Hu, B.; Luo, D.; Peng, J.; Shi, Z. Estimation of soil inorganic carbon with visible near-infrared spectroscopy coupling of variable selection and deep learning in arid region of China. Geoderma 2023, 437, 116589. [Google Scholar] [CrossRef]
- Kawamura, K.; Nishigaki, T.; Andriamananjara, A.; Rakotonindrina, H.; Tsujimoto, Y.; Moritsuka, N.; Rabenarivo, M.; Razafimbelo, T. Using a one-dimensional convolutional neural network on visible and near-infrared spectroscopy to improve soil phosphorus prediction in Madagascar. Remote Sens. 2021, 13, 1519. [Google Scholar] [CrossRef]
- Baumann, P.; Lee, J.; Behrens, T.; Biswas, A.; Six, J.; McLachlan, G.; Viscarra Rossel, R.A. Modelling soil water retention and water-holding capacity with visible–near-infrared spectra and machine learning. Eur. J. Soil Sci. 2022, 73, e13220. [Google Scholar] [CrossRef]
- Gruszczyński, S.; Gruszczyński, W. Supporting soil and land assessment with machine learning models using the Vis-NIR spectral response. Geoderma 2022, 405, 115451. [Google Scholar] [CrossRef]
- Ke, Z.; Ren, S.; Yin, L. Advancing soil property prediction with encoder-decoder structures integrating traditional deep learning methods in Vis-NIR spectroscopy. Geoderma 2024, 449, 117006. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Y.; Chen, D.; Zheng, W.; Ma, Y.; Pan, X. Simultaneous estimation of multiple soil properties under moist conditions using fractional-order derivative of vis-NIR spectra and deep learning. Geoderma 2023, 438, 116653. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.-W.; Zhou, Y.-N.; Wang, L.; Zeng, L.-T.; Cui, Y.-P.; Sun, X.-L. Simultaneous estimation of multiple soil properties from vis-NIR spectra using a multi-gate mixture-of-experts with data augmentation. Geoderma 2025, 453, 117127. [Google Scholar] [CrossRef]
- Li, R.; Yin, B.; Cong, Y.; Du, Z. Simultaneous prediction of soil properties using multi_cnn model. Sensors 2020, 20, 6271. [Google Scholar] [CrossRef]
- Tsakiridis, N.L.; Keramaris, K.D.; Theocharis, J.B.; Zalidis, G.C. Simultaneous prediction of soil properties from VNIR-SWIR spectra using a localized multi-channel 1-D convolutional neural network. Geoderma 2020, 367, 114208. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, S.; Lu, R.; Zhang, X.; Ma, Y.; Shi, Z. Non-linear memory-based learning for predicting soil properties using a regional vis-NIR spectral library. Geoderma 2024, 441, 116752. [Google Scholar] [CrossRef]
- Soltani, I.; Fouad, Y.; Michot, D.; Bréger, P.; Dubois, R.; Cudennec, C. A near infrared index to assess effects of soil texture and organic carbon content on soil water content. Eur. J. Soil Sci. 2019, 70, 151–161. [Google Scholar] [CrossRef]
- Stenberg, B.; Rossel, R.A.V.; Mouazen, A.M.; Wetterlind, J. Visible and near infrared spectroscopy in soil science. Adv. Agron. 2010, 107, 163–215. [Google Scholar] [CrossRef]
- Marakkala Manage, L.P.; Greve, M.H.; Knadel, M.; Moldrup, P.; De Jonge, L.W.; Katuwal, S. Visible-near-infrared spectroscopy prediction of soil characteristics as affected by soil-water content. Soil Sci. Soc. Am. J. 2018, 82, 1333–1346. [Google Scholar] [CrossRef]
- Knadel, M.; Deng, F.; Alinejadian, A.; Wollesen de Jonge, L.; Moldrup, P.; Greve, M.H. The effects of moisture conditions—From wet to hyper dry—On visible near-infrared spectra of Danish reference soils. Soil Sci. Soc. Am. J. 2014, 78, 422–433. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; Mckee, M. Spatial root zone soil water content estimation in agricultural lands using bayesian-based artificial neural networks and high-resolution visual, nir, and thermal imagery. Irrig. Drain 2017, 66, 273–288. [Google Scholar] [CrossRef]
- Blaschek, M.; Roudier, P.; Poggio, M.; Hedley, C.B. Prediction of soil available water-holding capacity from visible near-infrared reflectance spectra. Sci. Rep. 2019, 9, 12833. [Google Scholar] [CrossRef] [PubMed]
- Mouazen, A.M.; De Baerdemaeker, J.; Ramon, H. Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer. Soil Tillage Res. 2005, 80, 171–183. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Mouazen, A.M. Removal of external influences from on-line vis-NIR spectra for predicting soil organic carbon using machine learning. Catena 2022, 211, 106015. [Google Scholar] [CrossRef]
- Riefolo, C.; Castrignanò, A.; Colombo, C.; Conforti, M.; Ruggieri, S.; Vitti, C.; Buttafuoco, G. Investigation of soil surface organic and inorganic carbon contents in a low-intensity farming system using laboratory visible and near-infrared spectroscopy. Arch. Agron. Soil Sci. 2020, 66, 1436–1448. [Google Scholar] [CrossRef]
- Ding, J.; Yang, A.; Wang, J.; Sagan, V.; Yu, D. Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy. PeerJ 2018, 6, e5714. [Google Scholar] [CrossRef]
- Nawar, S.; Mouazen, A. On-line vis-NIR spectroscopy prediction of soil organic carbon using machine learning. Soil Tillage Res. 2019, 190, 120–127. [Google Scholar] [CrossRef]
- Kok, M.; Sarjant, S.; Verweij, S.; Vaessen, S.F.; Ros, G.H. On-site soil analysis: A novel approach combining NIR spectroscopy, remote sensing and deep learning. Geoderma 2024, 446, 116903. [Google Scholar] [CrossRef]
- Reda, R.; Saffaj, T.; Ilham, B.; Saidi, O.; Issam, K.; Brahim, L.; El Hadrami, E.M. A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy. Chemom. Intellig. Lab. Syst. 2019, 195, 103873. [Google Scholar] [CrossRef]
- Liu, L.; Ji, M.; Buchroithner, M. Transfer learning for soil spectroscopy based on convolutional neural networks and its application in soil clay content mapping using hyperspectral imagery. Sensors 2018, 18, 3169. [Google Scholar] [CrossRef]
- Zayani, H.; Fouad, Y.; Michot, D.; Kassouk, Z.; Baghdadi, N.; Vaudour, E.; Lili-Chabaane, Z.; Walter, C. Using machine-learning algorithms to predict soil organic carbon content from combined remote sensing imagery and laboratory vis-NIR spectral datasets. Remote Sens. 2023, 15, 4264. [Google Scholar] [CrossRef]
- Miao, T.; Ji, W.; Li, B.; Zhu, X.; Yin, J.; Yang, J.; Huang, Y.; Cao, Y.; Yao, D.; Kong, X. Advanced Soil Organic Matter Prediction with a Regional Soil NIR Spectral Library Using Long Short-Term Memory–Convolutional Neural Networks: A Case Study. Remote Sens. 2024, 16, 1256. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, C.; Ma, H.; Liu, J.; Guo, Z.; Yao, C.; Wang, X.; Pan, X. UAV hyperspectral prediction of soil nutrients using the cluster-hybrid method. Comput. Electron. Agric. 2025, 237, 110534. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, S.; Huang, M.; Zhu, Q. PEAMATL: A strategy for developing near-infrared spectral prediction models under domain shift using self-supervised transfer learning. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Studies focusing on soil, soil moisture, soil organic and inorganic carbon, and soil nutrients | Studies focused on heavy metals, microplastics, or soil contaminants |
Studies specifically focusing on Vis-NIR spectral data | Studies primarily analyzing vegetation indices or plant physiological indicators |
Application of machine learning or deep learning | Studies not using NIR or Vis-NIR spectroscopy |
Studies aiming to predict soil properties using spectral data | Studies without predictive modeling or soil-based focus |
Bond or Chemical Substances | Wavelength (nm) | Reference |
---|---|---|
C–H (sp3) | 3333–3571 | [85] |
C–H (sp2) | 3226–3333 | |
C–H (sp) | 3030 | |
C≡C, C≡N | 4348–4545 | |
O–H, N–H | 2703–3333 | |
C=O | 5495–6098 | |
C–O | 7937–9523 | |
Carbonate | 2335, 3968, 6993 | [11] |
Organic matter | 1100, 1600, 1700, 1800, 2000, 2200–2400, 3413–3509, 5,14, 5952, 6135, 6250–6369, 6535, 7143 | |
Water | 1400, 1900 |
Algorithm | Characteristics | Limitations | References |
---|---|---|---|
Partial least square regression (PLSR) | Effective for reducing collinearity | Poor for nonlinear relationships | [7,92] |
Support vector machine regression (SVMR) | Handles nonlinear relationships with high generalization performance | Less effective for overlapping data | [15,93] |
Random forest (RF) | Robust to overfitting and noise | Decreased accuracy on complex dataset | [94,95] |
Gradient boosting regression trees (GBRTs) | High prediction accuracy through gradient-based optimization | Weakness in handling noise | [15,96] |
Extreme gradient boost (XGBoost) | Improves generalization and prevents overfitting | Complex hyperparameter tuning | [97] |
Extreme learning machine (ELM) | Overcomes slow learning and high generalization performance | Susceptible to overfitting due to lack of structural risk control | [98] |
Cubist | Handles nonlinear relationships with intricate datasets | limited interpretability due to rule-based structure | [24,99] |
Artificial neural network (ANN) | Supported by advanced mathematical models and software tools | Require integration with optimization algorithm | [100] |
Convolutional neural network (CNN) | Improves the generalization of the network and prevent overfitting | Complex architecture tuning | [101] |
Backpropagation neural network (BPNN) | Learns through error backpropagation; effective for nonlinear relationships | Slow training rate and risk of convergence to local minima | [43,101] |
Study Environment | Soil Water Type | Soil Water Content (%) | Spectral Data Source | Preprocessing Method | Prediction Method | Prediction Performance | Reference |
---|---|---|---|---|---|---|---|
Field | At a depth of 15 cm | 19.7 | UAV | Bay-ANN | R2 = 0.85, RMSE = 1.1 | [118] | |
Laboratory | Soil-water content at pF 3 | 16 ± 6 | Labspec5100 spectrometer | SG, PCA, gap-segmented second-derivative | PLSR | R2 = 0.79–0.84, RMSE = 2.2–2.9, RPIQ = 1.7–2.3 | [116] |
Laboratory | Available water capacity | 14.5 ± 6 | Labspec® vis–NIR spectrometer | CR, SG, 1D | Cubist | R2 = 0.70, RMSE = 3.3 | [106] |
Laboratory | Field capacity | 39.6 ± 11.0 | ASD FieldSpec®3 spectroradiometer | SG, 1D, PCA | PLSR, PLS-SVM | R2 = 0.70, RMSE = 6.68, RPD = 1.81 | [119] |
Permanent wilting point | 20.1 ± 10.3 | R2 = 0.78, RMSE = 4.41, RPD = 2.12 | |||||
Laboratory and field | Soil water content | 12.6 ± 8.4 | Corona fiber VISNIR spectrophotometer | SG, 1D, max normalization | PLSR | Laboratory R2 = 0.98, RMSE = 1.65, RPD = 5.12 Field R2 = 0.75, RMSE = 2.50, RPD = 3.38 | [120] |
Laboratory | Soil water content | 0.18 ± 0.04 | ASD FieldSpec®4 spectroradiometer | SG, SNV, MSC, 1D, 2D, Log T, normalization | PLSR | log(1/R) + SG + SNV + 1D R2 = 0.80, RMSE = 0.01, RPD = 2.09 | [67] |
Study Environment | Nutrient | Soil Nutrient Content (%) | Spectral Data Source | Preprocessing Method | Prediction Method | Prediction Performance | Reference |
---|---|---|---|---|---|---|---|
Field | SOM | 1.82 ± 0.26 | Fieldspec® ProFR spectrometer, GF-1 satellite data | SG, PCA, standardization | PLSR, RF | RF RMSE = 0.18, RPIQ = 1.99 | [95] |
Laboratory | SOC | 1.52 ± 0.02 | FT-NIR probe | Continuous wavelets transform | Cubist | R2 = 0.44, RMSE = 0.31, RPD = 1.32 | [9] |
SIC | 0.34 ± 0.02 | R2 = 0.42, RMSE = 0.24, RPD = 1.36 | |||||
Laboratory | SOC | 1.60 ± 0.49 | Fiber-type vis-NIR spectrophotometer | SG, 1D, max normalization | RF | R2 = 0.84, RMSE = 0.14, RPD = 2.55 | [124] |
Field | SOC | 1.60 ± 0.49 | R2 = 0.75, RMSE = 0.17, RPD = 2.04 | ||||
Laboratory | SOC | 0.40 ± 0.65 | ASD FieldSpec®3 spectroradiometer | SG, 1D | RF, RF-SVM, ACO-iPLS | RF-SVM R2 = 0.91, RMSE = 0.27, RPD = 2.41 | [123] |
Laboratory | SIC | 1.83 ± 0.46 | ASD FieldSpec®4 spectroradiometer | CARS, PSO, ACO, IRF, IRIV | 1-CNN, 2-CNN, LSTM, DBN | IRF-1-CNN R2 = 0.90, RMSE = 0.15, RPIQ = 4.20 | [104] |
Laboratory | SOC | 0.20 ± 0.05 | ASD FieldSpec®5 spectroradiometer | SG, 1D, 2D, MSC, SNV | PLSR | SG-1D R2 = 0.66, RMSE = 0.03, RPIQ = 2.19 | [122] |
SIC | 33.1 ± 28.3 | SG-1D R2 = 0.93, RMSE = 0.26, RPIQ = 5.08 | |||||
Laboratory | SOM | 4.17 ± 2.04 | PSR-1100F portable ground-object spectrometer | SG, 1D, CR, reciprocal, logarithmic, first derivative of reciprocal, and first derivative of logarithmic | PLS, RF, SVM, XGBoost, BPNN | PLSR-FDR RPD = 1.458, RPIQ = 1.488 | [43] |
Laboratory | SOC | 0.48 ± 0.26 | ASD FieldSpec®3 spectrometer | SG, 1D, 2D, PCA, SNV | PLSR, SVMR | SVMR-1D R2 = 0.84, RMSE = 0.12, RPD = 2.47 | [7] |
Laboratory | SOM | 1.84 ± 0.36 | ASD FieldSpec®4 spectroradiometer | SG, SNV, MSC, 1D, 2D, Log T, normalization | PLSR | SG + MSC + 1D R2 = 0.98, RMSE = 0.45, RPD = 8.56 | [67] |
Laboratory | SOC (0–10 cm) | 0.92–1.6 | ASD FieldSpec®3 spectrometer | SG, Log T, PCA | PLSR, SVM | SVM R2 = 0.87, RMSE = 0.13, RPD = 2.8 | [103] |
SOC (10–40 cm) | 0.7–1.3 | SVM R2 = 0.93, RMSE = 0.35, RPD = 2.5 | |||||
Laboratory | SOC | 2.50 ± 7.42 | ASD LabSpec 2500 | SG, 1D, 2D, SNV, Log T, CR | PLSR-Log T, RF-SC-1D, Cubist-CR, MARS-SG-1D | RF-SG-1D R2 = 0.94, RMSE = 1.78 | [77] |
Study Environment | Nutrient | Soil Nutrient Content (mg kg−1) | Spectral Data Source | Preprocessing Method | Prediction Method | Prediction Performance | Reference |
---|---|---|---|---|---|---|---|
Field | TN | 1340 ± 140 | Fieldspec® ProFR spectrometer GF-1 satellite data | SG, PCA, standardization | PLSR, RF | PLSR RMSE = 110, RPIQ = 1.59 | [95] |
Laboratory | TN | 1100 ± 400 | ASD FieldSpec®3 spectrometer | SG, 1D, CR | PLSR, SVMR, BPNN, ELM, | ELM R2 = 0.65, RMSE = 200 | [18] |
Laboratory | AN | 24.6 ± 16.7 | ASD FieldSpec®3 spectrometer | SG, 1D, 2D, PCA, SNV | PLSR, SVMR | PLSR-1D R2 = 0.49, RMSE = 12.34, RPD = 1.40 | [7] |
AP | 123.5 ± 90.7 | PLSR-1D R2 = 0.71, RMSE = 45.75, RPD = 1.83 | |||||
AK | 88.2 ± 52.0 | PLSR-1D R2 = 0.70, RMSE = 34.02, RPD = 1.82 | |||||
Laboratory | TN | 0.08 ± 0.03 | NIRs-XDS | Wavelet function (autoscale, GLSW, detrend + GLSW, EPO) | SVMR, PLS-ANN, GBRT | GBRT-EPO r = 0.925, RMSE = 0.013, RPD = 2.6349 | [15] |
TP | 6.38 ± 14.0 | GBRT-EPO r = 0.967, RMSE = 4.825, RPD = 3.9229 | |||||
TK | 0.33 ± 0.30 | GBRT-EPO r = 0.908, RMSE = 0.126, RPD = 2.3805 | |||||
Laboratory | Oxalate-extractable P | 220.9 ± 290.0 | ASD FieldSpec®4 spectrometer | SG, SNV | PLSR, RF, 1-CNN | 1-CNN R2 = 0.88, RMSE = 101.2 RPIQ = 2.49 | [105] |
Laboratory | TN | 1350 ± 160 | ASD FieldSpec®4 spectrometer | SG, SNV, MSC, 1D, 2D, Log T, normalization | PLSR | R + SG + NOR + 2D R2 = 0.98, RMSE = 20, RPD = 6.67 | [67] |
Nitrate | 4.68 ± 2.82 | log(1/R) + SG + 1D R2 = 0.90, RMSE = 0.62, RPD = 3.07 | |||||
AP | 26.0 ± 17.2 | log(1/R) + SG + MSC + 2D R2 = 0.85, RMSE = 5.75, RPD = 3.58 | |||||
AK | 142.6 ± 56.9 | R + SG + SNV + 2D R2 = 0.89, RMSE = 1.39, RPD = 2.91 | |||||
Laboratory | Topsoil TN (0–10 cm) | 5000–8000 | ASD FieldSpec®3 spectrometer | SG, Log T, PCA | PLSR, SVM | SVM R2 = 0.91, RMSE = 1000, RPD = 2.4 | [103] |
Subsoil TN (10~40 cm) | 2000–4000 | SVM R2 = 0.89, RMSE = 2600, RPD = 2.4 | |||||
Laboratory | TN | 1600 ± 3500 | ASD LabSpec 2500 | SG, 1D, 2D, SNV, Log T, CR | PLSR, RF, Cubist, MARS | Cubist-CR R2 = 0.92, RMSE = 1000 | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.K.; Lee, S.J.; Park, J.H. Prediction of Soil Properties Using Vis-NIR Spectroscopy Combined with Machine Learning: A Review. Sensors 2025, 25, 5045. https://doi.org/10.3390/s25165045
Shin SK, Lee SJ, Park JH. Prediction of Soil Properties Using Vis-NIR Spectroscopy Combined with Machine Learning: A Review. Sensors. 2025; 25(16):5045. https://doi.org/10.3390/s25165045
Chicago/Turabian StyleShin, Su Kyeong, Seung Jun Lee, and Jin Hee Park. 2025. "Prediction of Soil Properties Using Vis-NIR Spectroscopy Combined with Machine Learning: A Review" Sensors 25, no. 16: 5045. https://doi.org/10.3390/s25165045
APA StyleShin, S. K., Lee, S. J., & Park, J. H. (2025). Prediction of Soil Properties Using Vis-NIR Spectroscopy Combined with Machine Learning: A Review. Sensors, 25(16), 5045. https://doi.org/10.3390/s25165045