Adaptive Feature- and Scale-Based Object Tracking with Correlation Filters for Resource-Constrained End Devices in the IoT
Abstract
1. Introduction
- We propose an adaptive mapped-feature and scale-interval method with a response-interference-suppression correlation filter for real-time object tracking, which adopts fewer feature dimensions and sparse temporal scale intervals while maintaining high accuracy.
- To improve upon existing feature integration and scale estimation methods, two adaptive methods are proposed for temporal scale intervals and mapped-feature responses based on dimensionality reduction and histogram scores to boost overall performance.
2. Related Work
3. Proposed Algorithm
3.1. Response-Interference-Suppression Correlation Filter Tracking
3.2. Adaptive Mapped-Feature Response
3.3. Adaptive Temporal Scale-Interval Estimation
3.4. Tracking
4. Experiments
4.1. Implementation Details
4.2. Ablation Study of ARIST
4.2.1. Component Analysis of ARIST
4.2.2. Adaptive Map Value Analysis
4.2.3. Feature Dimension Analysis of ARIST
4.2.4. Adaptive Temporal Scale-Interval Analysis of ARIST
4.3. Comparison with State-of-the-Art Trackers
4.3.1. Comparison with Handcrafted Feature Trackers
4.3.2. Comparison with Deep Learning Trackers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, W.; Zhang, J.; Cai, C.; Chen, Q.; Zhao, Y.; Lou, Y.; Jiang, W.; Gui, G. CNN-based intelligent safety surveillance in green IoT applications. China Commun. 2021, 18, 108–119. [Google Scholar] [CrossRef]
- Smeulders, A.; Chu, D.; Cucchiara, R.; Calderara, S.; Deghan, A.; Shah, M. Visual tracking: An experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1142–1468. [Google Scholar]
- Fu, C.; Cao, Z.; Li, Y.; Ye, J.; Feng, C. Onboard real-time aerial tracking with efficient Siamese anchor proposal network. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–13. [Google Scholar] [CrossRef]
- Mueller, M.; Smith, N.; Ghanem, B. A Benchmark and Simulator for UAV Tracking. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 445–461. [Google Scholar]
- Huang, Z.; Fu, C.; Li, Y.; Lin, F.; Lu, P. Learning Aberrance Repressed Correlation Filters for Real-Time UAV Tracking. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Cao, Z.; Huang, Z.; Pan, L.; Zhang, S.; Liu, Z.; Fu, C. TCTrack: Temporal contexts for aerial tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 14798–14808. [Google Scholar]
- Cao, Z.; Fu, C.; Ye, J.; Li, B.; Li, Y. HiFT: Hierarchical feature transformer for aerial tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 15457–15466. [Google Scholar]
- Yan, B.; Peng, H.; Fu, J.; Wang, D.; Lu, H. Learning spatio-temporal transformer for visual tracking. In Proceedings of the IEEE/CVF InternationalConference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 10448–10457. [Google Scholar]
- Li, Y.; Liu, M.; Wu, Y.; Wang, X.; Yang, X.; Li, S. Learning adaptive and view-invariant vision transformer for real-time UAV tracking. In Proceedings of the Forty-First International Conference on Machine Learning, Vienna, Austria, 21–27 July 2024. [Google Scholar]
- Yao, L.; Fu, C.; Li, S.; Zheng, G.; Ye, J. SGDViT: Saliency-guided dynamic vision transformer for UAV tracking. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation, London, UK, 29 May–2 June 2023; pp. 3353–3359. [Google Scholar]
- Ji, Z.; Feng, K.; Qian, Y.; Liang, J. Sparse regularized correlation filter for UAV object tracking with adaptive contextual learning and keyfilter selection. Inf. Sci. 2024, 658, 120013. [Google Scholar] [CrossRef]
- Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2544–2550. [Google Scholar]
- Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. Highspeed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 583–596. [Google Scholar] [CrossRef]
- Ye, J.; Fu, C.; Lin, F.; Ding, F.; An, S.; Lu, G. Multi-regularized correlation filter for UAV tracking and self-localization. IEEE Trans. Ind. Electron. 2021, 69, 6004–6014. [Google Scholar] [CrossRef]
- Galoogahi, H.K.; Fagg, A.; Lucey, S. Learning Background-Aware Correlation Filters for Visual Tracking. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017. [Google Scholar]
- Chen, Z.; Liu, L.; Yu, Z. Learning Dynamic Distractor-Repressed Correlation Filter for Real-Time UAV Tracking. IEEE Signal Process. Lett. 2025, 32, 616–620. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, S.; Zhang, Y.; Qiu, Z. Perceiving temporal environment for correlation filters in real-time UAV tracking. IEEE Signal Process. Lett. 2021, 29, 6–10. [Google Scholar] [CrossRef]
- Dai, K.; Wang, D.; Lu, H.; Sun, C.; Li, J. Visual Tracking via Adaptive Spatially-Regularized Correlation Filters. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Fu, C.; Jin, J.; Ding, F.; Li, Y.; Lu, G. Spatial Reliability Enhanced Correlation Filter: An Efficient Approach for Real-Time UAV Tracking. IEEE Trans. Multimedia 2021, 26, 123–4137. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Yang, Y.; Liu, H.; Yuan, D. RISTrack: Learning response interference suppression correlation filters for UAV tracking. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Li, S.; Yeung, D. Visual object tracking for unmanned aerial vehicles: A benchmark and new motion models. In Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Yu, H.; Li, G.; Zhang, W.; Huang, Q.; Du, D.; Tian, Q.; Sebe, N. The unmanned aerial vehicle benchmark: Object detection, tracking and baseline. Int. J. Comput. Vis. 2020, 128, 1141–1159. [Google Scholar] [CrossRef]
- Danelljan, M.; Khan, F.S.; Felsberg, M.; van de Weijer, J. Adaptive color attributes for real-time visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1090–1097. [Google Scholar]
- Li, F.; Tian, C.; Zuo, W.; Zhang, L.; Yang, M.H. Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Li, Y.; Fu, C.; Ding, F.; Huang, Z.; Lu, G. AutoTrack: Towards High-Performance Visual Tracking for UAV with Automatic Spatio-Temporal Regularization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Danelljan, M.; Bhat, G.; Khan, F.S.; Felsberg, M. ECO: Efficient Convolution Operators for Tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 6931–6939. [Google Scholar]
- Li, S.; Zhao, S.; Cheng, B.; Chen, J. Efficient Particle Scale Space for Robust Tracking. IEEE Signal Process. Lett. 2020, 27, 371–375. [Google Scholar] [CrossRef]
- Bertinetto, L.; Valmadre, J.; Golodetz, S.; Miksik, O.; Torr, P.H.S. Staple: Complementary learners for real-time tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; Volume 38, pp. 1401–1409. [Google Scholar]
- Wang, N.; Zhou, W.; Song, Y.; Ma, C.; Liu, W.; Li, H. Unsupervised deep representation learning for real-time tracking. Int. J. Comput. Vis. 2021, 129, 400–418. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, W.; Tian, Q.; Hong, R.; Wang, M.; Li, H. Multi-Cue Correlation Filters for Robust Visual Tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
Tracker | RISTrack | RISTrack-PSST | ARIST-AF | ARIST-AS | ARIST |
---|---|---|---|---|---|
Precision | 0.717 | 0.719 | 0.727 | 0.720 | 0.730 |
Success | 0.490 | 0.487 | 0.493 | 0.495 | 0.498 |
FPS | 42.1 | 37.6 | 36.5 | 33.5 | 41.3 |
Temporal Scale Interval | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Precision/Success | 0.727/0.493 | 0.730/0.498 | 0.730/0.490 | 0.717/0.481 | 0.732/0.488 |
Mean FPS | 36.5 | 41.3 | 42.3 | 43.1 | 44.3 |
Tracker | MCCT [30] | ASRCF [18] | LUDT [29] | STARK-st101 [8] | HiFT [7] | TCTrack [6] | SGDViT [10] | AVTrack [9] | ARIST |
---|---|---|---|---|---|---|---|---|---|
Venue | CVPR’18 | CVPR’19 | IJCV’21 | ICCV’21 | ICCV’21 | CVPR’22 | ICRA’23 | ICML’24 | Ours |
Precision | 0.671 | 0.700 | 0.701 | 0.704 | 0.652 | 0.725 | 0.657 | 0.788 | 0.745 |
Success | 0.437 | 0.469 | 0.406 | 0.469 | 0.475 | 0.530 | 0.480 | 0.572 | 0.470 |
FPS | 8.8 * | 22.3 * | 59.3 * | 37.9 * | - | - | - | - | 41.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Kang, K.; Zhao, S.; Cheng, B.; Chen, J. Adaptive Feature- and Scale-Based Object Tracking with Correlation Filters for Resource-Constrained End Devices in the IoT. Sensors 2025, 25, 5025. https://doi.org/10.3390/s25165025
Li S, Kang K, Zhao S, Cheng B, Chen J. Adaptive Feature- and Scale-Based Object Tracking with Correlation Filters for Resource-Constrained End Devices in the IoT. Sensors. 2025; 25(16):5025. https://doi.org/10.3390/s25165025
Chicago/Turabian StyleLi, Shengjie, Kaiwen Kang, Shuai Zhao, Bo Cheng, and Junliang Chen. 2025. "Adaptive Feature- and Scale-Based Object Tracking with Correlation Filters for Resource-Constrained End Devices in the IoT" Sensors 25, no. 16: 5025. https://doi.org/10.3390/s25165025
APA StyleLi, S., Kang, K., Zhao, S., Cheng, B., & Chen, J. (2025). Adaptive Feature- and Scale-Based Object Tracking with Correlation Filters for Resource-Constrained End Devices in the IoT. Sensors, 25(16), 5025. https://doi.org/10.3390/s25165025