Extremum-Seeking Control for a Robotic Leg Prosthesis with Sensory Feedback
Abstract
1. Introduction
2. Materials and Methods
2.1. Dynamics of the Leg Prosthesis
2.2. Restoration of Sensory Feedback
2.3. Continuous-Phase Variable
2.4. Control Development
2.4.1. Controller Design
2.4.2. Design of Cost Function
2.4.3. Extremum-Seeking Method
2.4.4. Stability Analysis
3. Experiments and Results
3.1. Experiment Setup
3.1.1. Study Volunteers
3.1.2. Robotic Leg Prosthesis
3.2. Case1: Assessment of Walk from Low Speed to High Speed
3.2.1. Experiment
3.2.2. Results
3.3. Case2: Assessment of Walk from High Speed to Low Speed
3.3.1. Experiment
3.3.2. Results
3.4. Case3: Assessment of Walk from Level Ground to Up Slope
3.4.1. Experiment
3.4.2. Results
3.5. Case4: Assessment of Walk from up Slope to Level Ground
3.5.1. Experiment
3.5.2. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vargas, L.; Huang, H.; Zhu, Y.; Hu, X. Object recognition via evoked sensory feedback during control of a prosthetic hand. IEEE Robot. Autom. Lett. 2022, 7, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Raspopovic, S.; Capogrosso, M.; Petrini, F.M.; Bonizzato, M.; Rigosa, J.; Di Pino, G.; Carpaneto, J.; Controzzi, M.; Boretius, T.; Fernandez, E.; et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 2014, 6, 222ra19. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, W.; Zhao, S.; Yu, Z.; Kang, Y.; Chen, C.L.P. Brain-actuated control of dual-arm robot manipulation with relative motion. IEEE Trans. Cogn. Dev. Syst. 2019, 11, 51–62. [Google Scholar] [CrossRef]
- Qiu, S.; Yi, W.; Xu, J.; Qi, H.; Du, J.; Wang, C.; He, F.; Ming, D. Event-related beta EEG changes during active, passive movement and functional electrical stimulation of the lower limb. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 283–290. [Google Scholar] [CrossRef]
- Ren, S.; Wang, W.; Hou, Z.-G.; Liang, X.; Wang, J.; Shi, W. Enhanced motor imagery based brain-computer interface via FES and VR for lower limbs. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1846–1855. [Google Scholar] [CrossRef] [PubMed]
- Petrini, F.M.; Valle, G.; Bumbasirevic, M.; Barberi, F.; Bortolotti, D.; Cvancara, P.; Hiairrassary, A.; Mijovic, P.; Sverrisson, A.Ö.; Pedrocchi, A.; et al. Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci. Transl. Med. 2019, 11, eaav8939. [Google Scholar] [CrossRef]
- Petrini, F.M.; Bumbasirevic, M.; Valle, G.; Ilic, V.; Mijović, P.; Čvančara, P.; Barberi, F.; Katic, N.; Bortolotti, D.; Andreu, D.; et al. Sensory feedack restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nat. Med. 2019, 25, 1356–1363. [Google Scholar] [CrossRef]
- Yin, K.; Xiang, K.; Pang, M.; Chen, J.; Anderson, P.; Yang, L. Personalised control of robotic ankle exoskeleton through experience-based adaptive fuzzy inference. IEEE Access 2019, 7, 72221–72233. [Google Scholar] [CrossRef]
- Raziyev, Y.; Garifulin, R.; Shintemirov, A.; Do, T.D. Development of a power assist lifting device with a fuzzy PID speed regulator. IEEE Access 2019, 7, 30724–30731. [Google Scholar] [CrossRef]
- Xia, H.; Pi, M.; Jin, L.; Song, R.; Li, Z. Human collaborative control of lower-limb prosthesis based on game theory and fuzzy approximation. IEEE Trans. Cybern. 2025, 55, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Si, J.; Gao, X.; Huang, S.; Huang, H.H. A new powered lower limb prosthesis control framework based on adaptive dynamic programming. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2215–2220. [Google Scholar] [CrossRef]
- Ma, T.; Wang, Y.; Chen, X.; Chen, C.; Hou, Z.; Yu, H.; Fu, C. A piecewise monotonic smooth phase variable for speed-adaptation control of powered knee-ankle prostheses. IEEE Robot. Autom. Lett. 2022, 7, 8526–8533. [Google Scholar] [CrossRef]
- Menanno, M.; Riccio, C.; Benedetto, V.; Gissi, F.; Savino, M.M.; Troiano, L. An ergonomic risk assessment system based on 3D human pose estimation and collaborative robots. Appl. Sci. 2024, 14, 4823. [Google Scholar] [CrossRef]
- Horn, J.C.; Gregg, R.D. Nonholonomic virtual constraints for control of powered prostheses across walking speeds. IEEE Trans. Control Syst. Technol. 2022, 30, 2062–2071. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Bolivar-Nieto, E.; Welker, C.G.; Gregg, R.D. Modeling the transitional kinematics between variable-incline walking and stair climbing. IEEE Trans. Med. Robot. Bionics 2022, 4, 840–851. [Google Scholar] [CrossRef]
- Embry, K.R.; Gregg, R.D. Analysis of continuously varying kinematics for prosthetic leg control applications. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 262–272. [Google Scholar] [CrossRef]
- Rezazadeh, S.; Quintero, D.; Divekar, N.; Reznick, E.; Gray, L.; Gregg, R.D. A phase variable approach for improved rhythmic and non-rhythmic control of a powered knee-ankle prosthesis. IEEE Access 2019, 7, 109840–109855. [Google Scholar] [CrossRef]
- Zhang, J.; Fiers, P.; Witte, K.A.; Jackson, R.W.; Poggensee, K.L.; Atkeson, C.G.; Collins, S.H. Human-in-the-loop optimization of exoskeleton assistance during walking. Science 2017, 356, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- Welker, C.G.; Best, T.K.; Gregg, R.D. Improving sit/stand loading symmetry and timing through unified variable impedance control of a powered knee-ankle prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 4146–4155. [Google Scholar] [CrossRef] [PubMed]
- Best, T.K.; Welker, C.G.; Rouse, E.J.; Gregg, R.D. Data-driven variable impedance control of a powered knee–ankle prosthesis for adaptive speed and incline walking. IEEE Trans. Robot. 2023, 39, 2151–2169. [Google Scholar] [CrossRef]
- Cao, W.; Chen, C.; Hu, H.; Fang, K.; Wu, X. Effect of hip assistance modes on metabolic cost of walking with a soft exoskeleton. IEEE Trans. Autom. Sci. Eng. 2021, 18, 426–436. [Google Scholar] [CrossRef]
- Gordon, D.F.N.; McGreavy, C.; Christou, A.; Vijayakumar, S. Human-in-the-loop optimization of exoskeleton assistance via online simulation of metabolic cost. IEEE Trans. Robot. 2022, 38, 1410–1429. [Google Scholar] [CrossRef]
- Killingsworth, N.J.; Krstiá, M. PID tuning using extremum seeking: Online, model-free performance optimization. IEEE Control Syst. Mag. 2006, 26, 70–79. [Google Scholar]
- Lin, J.; Divekar, N.V.; Thomas, G.C.; Gregg, R.D. Optimally biomimetic passivity-based control of a lower-limb exoskeleton over the primary activities of daily life. IEEE Open J. Control Syst. 2022, 1, 15–28. [Google Scholar] [CrossRef]
- Guay, M. A perturbation-based proportional integral extremum-seeking control approach. IEEE Trans. Autom. Control 2016, 61, 3370–3381. [Google Scholar] [CrossRef]
- Kumar, S.; Mohammadi, A.; Quintero, D.; Rezazadeh, S.; Gans, N.; Gregg, R.D. Extremum seeking control for model-free auto-tuning of powered prosthetic legs. IEEE Trans. Control Syst. Technol. 2019, 28, 2120–2135. [Google Scholar] [CrossRef] [PubMed]
- Paz, P.; Oliveira, T.R.; Pino, A.V.; Fontana, A.P. Model-free neuromuscular electrical stimulation by stochastic extremum seeking. IEEE Trans. Control Syst. Technol. 2020, 28, 238–253. [Google Scholar] [CrossRef]
- Sotiropoulos, F.E.; Asada, H.H. A model-free extremum-seeking approach to autonomous excavator control based on output power maximizatio. IEEE Robot. Autom. Lett. 2019, 4, 1005–1012. [Google Scholar] [CrossRef]
- Sharifi, M.; Mehr, J.K.; Mushahwar, V.K.; Tavakoli, M. Autonomous locomotion trajectory shaping and nonlinear control for lower limb exoskeletons. IEEE/ASME Trans. Mechatron. 2022, 27, 645–655. [Google Scholar] [CrossRef]
- Mahyuddin, M.N.; Na, J.; Herrmann, G.; Ren, X.; Barber, P. Adaptive observer-based parameter estimation with application to road gradient and vehicle mass estimation. IEEE Trans. Ind. Electron. 2014, 61, 2851–2863. [Google Scholar] [CrossRef]
- Azimi, V.; Fakoorian, S.A.; Nguyen, T.T.; Simon, D. Robust adaptive impedance control with application to a transfemoral prosthesis and test robot. J. Dyn. Syst. Meas. Control-Trans. ASME 2018, 140, 121002. [Google Scholar] [CrossRef]
- Kumar, S.; Zwall, M.; Bolivar-Nieto, E.; Gregg, R.D.; Gans, N. Extremum seeking control for stiffness auto-tuning of a quasi-passive ankle exoskeleton. IEEE Robot. Autom. Lett. 2020, 5, 4604–4611. [Google Scholar] [CrossRef]
Part | Mass (kg) | Motion Range (°) |
---|---|---|
Body Structure | 1.06 | |
Ankle Motor Unit | 0.91 | |
Knee Motor Unit | 1.01 | |
Electronics Assembly | 0.38 | |
Motion Range of Knee | to | |
Motion Range of Ankle | to | |
Total | 4.8 |
Subject | MEAN (Degree) with ECS | MSE (Degree) with ECS | MEAN (Degree) Without ECS | MSE (Degree) Without ECS |
---|---|---|---|---|
1 | 3.6 | 2.3 | 3.84 | 2.52 |
2 | 3.3 | 2.8 | 3.65 | 3.2 |
3 | 3.4 | 2.75 | 3.7 | 3.1 |
Subject | MEAN (Degree) with ECS | MSE (Degree) with ECS | MEAN (Degree) Without ECS | MSE (Degree) Without ECS |
---|---|---|---|---|
1 | 2.7 | 1.8 | 2.8 | 2.05 |
2 | 3.1 | 2.4 | 3.4 | 2.73 |
3 | 3.2 | 2.3 | 3.52 | 2.55 |
Subject | Up Slope Angle (Degree) | MEAN (Degree) with ECS | MSE (Degree) with ECS | MEAN (Degree) Without ECS | MSE (Degree) Without ECS |
---|---|---|---|---|---|
3.0 | 2.4 | 1.6 | 2.8 | 1.9 | |
1 | 5.0 | 2.9 | 2.3 | 3.3 | 2.5 |
7.0 | 3.4 | 2.6 | 3.6 | 2.8 | |
3.0 | 2.2 | 1.3 | 2.5 | 1.7 | |
2 | 5.0 | 2.8 | 1.7 | 3.2 | 2.1 |
7.0 | 3.1 | 2.2 | 3.4 | 2.6 | |
3.0 | 2.1 | 1.4 | 2.7 | 1.8 | |
3 | 5.0 | 2.6 | 1.9 | 3.1 | 2.2 |
7.0 | 3.05 | 2.5 | 3.3 | 2.7 |
Subject | Up Slope Angle (Degree) | MEAN (Degree) with ECS | MSE (Degree) with ECS | MEAN (Degree) Without ECS | MSE (Degree) Without ECS |
---|---|---|---|---|---|
7.0 | 3.6 | 3.1 | 3.8 | 3.5 | |
1 | 5.0 | 3.2 | 2.8 | 3.6 | 3.3 |
3.0 | 2.5 | 2.1 | 2.7 | 2.35 | |
7.0 | 3.5 | 2.6 | 3.7 | 2.9 | |
2 | 5.0 | 3.0 | 2.7 | 3.3 | 3.05 |
3.0 | 2.3 | 1.4 | 2.55 | 1.65 | |
7.0 | 3.2 | 2.4 | 3.5 | 2.6 | |
3 | 5.0 | 3.4 | 2.2 | 3.65 | 2.35 |
3.0 | 2.1 | 1.7 | 2.35 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pi, M. Extremum-Seeking Control for a Robotic Leg Prosthesis with Sensory Feedback. Sensors 2025, 25, 4975. https://doi.org/10.3390/s25164975
Pi M. Extremum-Seeking Control for a Robotic Leg Prosthesis with Sensory Feedback. Sensors. 2025; 25(16):4975. https://doi.org/10.3390/s25164975
Chicago/Turabian StylePi, Ming. 2025. "Extremum-Seeking Control for a Robotic Leg Prosthesis with Sensory Feedback" Sensors 25, no. 16: 4975. https://doi.org/10.3390/s25164975
APA StylePi, M. (2025). Extremum-Seeking Control for a Robotic Leg Prosthesis with Sensory Feedback. Sensors, 25(16), 4975. https://doi.org/10.3390/s25164975