Figure 1.
Flow chart of feature selection.
Figure 1.
Flow chart of feature selection.
Figure 2.
Hierarchical clustering diagram.
Figure 2.
Hierarchical clustering diagram.
Figure 3.
Transformer network model.
Figure 3.
Transformer network model.
Figure 4.
Multi-head attention mechanism.
Figure 4.
Multi-head attention mechanism.
Figure 5.
Overview of PRONOSTIA experimental platform of IEEE PHM 2012 Dataset.
Figure 5.
Overview of PRONOSTIA experimental platform of IEEE PHM 2012 Dataset.
Figure 6.
Feature correlation evaluation indicator on IEEE PHM 2012 Dataset.
Figure 6.
Feature correlation evaluation indicator on IEEE PHM 2012 Dataset.
Figure 7.
Feature monotonicity evaluation indicator on IEEE PHM 2012 Dataset.
Figure 7.
Feature monotonicity evaluation indicator on IEEE PHM 2012 Dataset.
Figure 8.
Feature robustness evaluation indicator on IEEE PHM 2012 Dataset.
Figure 8.
Feature robustness evaluation indicator on IEEE PHM 2012 Dataset.
Figure 9.
IEEE PHM 2012 dataset bearing 1-1 primary feature curve. (The 1st~8th feature labels are, respectively, the root mean square, average rectified value, mean square amplitude, impact DB value, average frequency value, frequency root mean square, frequency standard deviation, and 4th frequency band energy ratio of wavelet packet).
Figure 9.
IEEE PHM 2012 dataset bearing 1-1 primary feature curve. (The 1st~8th feature labels are, respectively, the root mean square, average rectified value, mean square amplitude, impact DB value, average frequency value, frequency root mean square, frequency standard deviation, and 4th frequency band energy ratio of wavelet packet).
Figure 10.
IEEE PHM 2012 dataset bearing 1-1 primary feature hierarchical clustering diagram.
Figure 10.
IEEE PHM 2012 dataset bearing 1-1 primary feature hierarchical clustering diagram.
Figure 11.
IEEE PHM 2012 dataset bearing 1-1 reselection feature vector curve. (The 1st~4th feature labels are, respectively, the average rectified value, impact DB value, average frequency value, and 4th frequency band energy ratio of wavelet packet).
Figure 11.
IEEE PHM 2012 dataset bearing 1-1 reselection feature vector curve. (The 1st~4th feature labels are, respectively, the average rectified value, impact DB value, average frequency value, and 4th frequency band energy ratio of wavelet packet).
Figure 12.
IEEE PHM2012 dataset bearing 1-1 health indicator.
Figure 12.
IEEE PHM2012 dataset bearing 1-1 health indicator.
Figure 13.
IEEE PHM2012 dataset bearing 2-1 health indicator.
Figure 13.
IEEE PHM2012 dataset bearing 2-1 health indicator.
Figure 14.
IEEE PHM2012 dataset bearing 3-3 health indicator on IEEE PHM 2012 Datase.
Figure 14.
IEEE PHM2012 dataset bearing 3-3 health indicator on IEEE PHM 2012 Datase.
Figure 15.
Overview of PRONOSTIA experimental platform of XJTU.
Figure 15.
Overview of PRONOSTIA experimental platform of XJTU.
Figure 16.
Feature correlation evaluation indicator on XJTU-SY Dataset.
Figure 16.
Feature correlation evaluation indicator on XJTU-SY Dataset.
Figure 17.
Feature monotonicity evaluation indicator on XJTU-SY Dataset.
Figure 17.
Feature monotonicity evaluation indicator on XJTU-SY Dataset.
Figure 18.
Feature robustness evaluation indicator on XJTU-SY Dataset.
Figure 18.
Feature robustness evaluation indicator on XJTU-SY Dataset.
Figure 19.
XJTU-SY dataset bearing 1-1 primary feature curve. (The 1st~11th feature labels are, respectively, the peak value, root mean square, variance, average rectified value, peak-to-peak value, mean square amplitude, impact DB value, average frequency value, frequency root mean square, frequency standard deviation, and 8th frequency band energy ratio of wavelet packet).
Figure 19.
XJTU-SY dataset bearing 1-1 primary feature curve. (The 1st~11th feature labels are, respectively, the peak value, root mean square, variance, average rectified value, peak-to-peak value, mean square amplitude, impact DB value, average frequency value, frequency root mean square, frequency standard deviation, and 8th frequency band energy ratio of wavelet packet).
Figure 20.
XJTU-SY dataset bearing 1-1 primary feature hierarchical clustering diagram.
Figure 20.
XJTU-SY dataset bearing 1-1 primary feature hierarchical clustering diagram.
Figure 21.
XJTU-SY dataset bearing 1-1 reselection feature vector curve. (The 1st~6th feature labels are, respectively, the peak value, variance, average rectified value, impact DB value, average frequency value, and 8th frequency band energy ratio of wavelet packet).
Figure 21.
XJTU-SY dataset bearing 1-1 reselection feature vector curve. (The 1st~6th feature labels are, respectively, the peak value, variance, average rectified value, impact DB value, average frequency value, and 8th frequency band energy ratio of wavelet packet).
Figure 22.
IEEE PHM2012 dataset bearing 1-3 health indicator.
Figure 22.
IEEE PHM2012 dataset bearing 1-3 health indicator.
Figure 23.
IEEE PHM2012 dataset bearing 2-3 health indicator.
Figure 23.
IEEE PHM2012 dataset bearing 2-3 health indicator.
Figure 24.
IEEE PHM2012 dataset bearing 3-3 health indicator.
Figure 24.
IEEE PHM2012 dataset bearing 3-3 health indicator.
Table 1.
Feature indicators.
Table 1.
Feature indicators.
Name | Equation | Name | Equation |
---|
Peak value | | Peak factor | |
Root mean square | 3 | Pulse factor | |
Variance | | Margin factor | |
Rectification average | | Impact DB value | |
Peak to peak | | Mean frequency | |
Square root amplitude | | Root mean square frequency | |
Cliffness | | Frequency standard deviation | |
Skewness | | Center frequency | |
Improved cosine distance | | Decomposition coefficient 4 | |
Waveform factor | | Decomposition coefficient 5 | |
Cosine distance of spectral values | | Decomposition coefficient 6 | |
Decomposition coefficient 1 | | Decomposition coefficient 7 | |
Decomposition coefficient 2 | | Decomposition coefficient 8 | |
Decomposition coefficient 3 | | | |
Table 2.
Test condition and data information on IEEE PHM 2012 Dataset.
Table 2.
Test condition and data information on IEEE PHM 2012 Dataset.
No. | Speed | Load | Datasets |
---|
1 | 1800 rmp | 4 kN | Bearing 1-1 Bearing 1-5 Bearing 1-2 Bearing 1-6 Bearing 1-3 Bearing 1-7 Bearing 1-4 |
2 | 1650 rpm | 4.2 kN | Bearing 2-1 Bearing 2-5 Bearing 2-2 Bearing 2-6 Bearing 2-3 Bearing 2-7 Bearing 2-4 |
3 | 1500 rpm | 5 kN | Bearing 3-1 Bearing 3-3 Bearing 3-2 |
Table 3.
Ranking table of feature correlation indicator on IEEE PHM 2012 Dataset.
Table 3.
Ranking table of feature correlation indicator on IEEE PHM 2012 Dataset.
Feature | Score | Feature | Score | Feature | Score |
---|
F13 | 0.857 | F14 | 0.780 | F8 | 0.659 |
F6 | 0.826 | F5 | 0.765 | F17 | 0.637 |
F16 | 0.826 | F24 | 0.761 | F25 | 0.634 |
F23 | 0.825 | F22 | 0.736 | F19 | 0.620 |
F4 | 0.823 | F21 | 0.712 | F10 | 0.620 |
F15 | 0.814 | F12 | 0.690 | F27 | 0.581 |
F2 | 0.814 | F11 | 0.677 | F9 | 0.571 |
F1 | 0.797 | F3 | 0.665 | F7 | 0.455 |
F18 | 0.793 | F20 | 0.664 | F26 | 0.414 |
Table 4.
Ranking table of feature monotonicity indicator on IEEE PHM 2012 Dataset.
Table 4.
Ranking table of feature monotonicity indicator on IEEE PHM 2012 Dataset.
Feature | Score | Feature | Score | Feature | Score |
---|
F14 | 0.407 | F17 | 0.261 | F26 | 0.160 |
F6 | 0.389 | F21 | 0.255 | F12 | 0.154 |
F2 | 0.383 | F23 | 0.245 | F11 | 0.153 |
F4 | 0.383 | F18 | 0.225 | F10 | 0.151 |
F15 | 0.381 | F27 | 0.219 | F1 | 0.130 |
F3 | 0.366 | F24 | 0.203 | F7 | 0.129 |
F13 | 0.348 | F5 | 0.183 | F25 | 0.128 |
F16 | 0.307 | F22 | 0.176 | F8 | 0.075 |
F19 | 0.280 | F20 | 0.164 | F9 | 0.071 |
Table 5.
Ranking table of feature robustness indicator on IEEE PHM 2012 Datase.
Table 5.
Ranking table of feature robustness indicator on IEEE PHM 2012 Datase.
Feature | Score | Feature | Score | Feature | Score |
---|
F8 | 0.434 | F1 | 0.377 | F11 | 0.364 |
F3 | 0.391 | F23 | 0.376 | F12 | 0.364 |
F2 | 0.381 | F27 | 0.371 | F10 | 0.364 |
F4 | 0.381 | F16 | 0.370 | F18 | 0.363 |
F6 | 0.381 | F9 | 0.368 | F20 | 0.358 |
F14 | 0.381 | F7 | 0.367 | F22 | 0.356 |
F15 | 0.381 | F25 | 0.367 | F24 | 0.350 |
F16 | 0.381 | F17 | 0.367 | F21 | 0.348 |
F5 | 0.379 | F19 | 0.366 | F13 | 0.346 |
Table 6.
Model parameter table.
Table 6.
Model parameter table.
Transformer | LSTM |
---|
encoder layers | decoder layers | heads in the multi-headed attention | recursion layers | hidden layer size |
3 | 3 | 4 | 2 | 3 |
Table 7.
Bearing health indicator evaluation on IEEE PHM 2012 Datase.
Table 7.
Bearing health indicator evaluation on IEEE PHM 2012 Datase.
| Model | Bearing 1-1 | Bearing 2-1 | Bearing 3-1 |
---|
Index | | Transformer | LSTM | Transformer | LSTM | Transformer | LSTM |
---|
Correlation | 0.875 | 0.833 | 0.844 | 0.47 | 0.784 | 0.765 |
Monotonicity | 0.360 | 0.212 | 0.176 | 0.144 | 0.570 | 0.423 |
Robustness | 0.947 | 0.920 | 0.729 | 0.675 | 0.918 | 0.796 |
Model | PCA | KPCA | PCA | KPCA | PCA | KPCA |
Correlation | 0.704 | 0.731 | 0.522 | 0.487 | 0.576 | 0.961 |
Monotonicity | 0.067 | 0.083 | 0.052 | 0.052 | 0.263 | 0.137 |
Robustness | 0.978 | 0.982 | 0.968 | 0.993 | 0.972 | 0.982 |
Model | MAFFN | MSM | MAFFN | MSM | MAFFN | MSM |
Correlation | 0.834 | 0.816 | 0.810 | 0.752 | 0.748 | 0.684 |
Monotonicity | 0.269 | 0.357 | 0.247 | 0.453 | 0.409 | 0.316 |
Robustness | 0.954 | 0.978 | 0.982 | 0.957 | 0.975 | 0.977 |
Table 8.
The computational time metrics.
Table 8.
The computational time metrics.
Model | Training Time (s/Epoch) | Inference Time (ms/Sample) | Sequence Length Support |
---|
LSTM | | | |
Transformer | | | |
Table 9.
The two models were compared with different sequence lengths on IEEE PHM 2012 Datase.
Table 9.
The two models were compared with different sequence lengths on IEEE PHM 2012 Datase.
Sequence Length | LSTM Accuracy (%) | Transformer Accuracy (%) | LSTM Training Stability |
---|
256 | 89.2 | 91.5 | Stable |
1024 | 75.6 | | Gradient vanishing |
Table 10.
Ablation study on model components for Case 1.
Table 10.
Ablation study on model components for Case 1.
Configuration | Monotonicity | Robustness | Trendability |
---|
Full Model | 0.92 | 0.88 | 0.94 |
No Intersection Clustering | 0.84 (−8.7%) | 0.76 (−13.6%) | 0.87 (−7.4%) |
Replaced by PCA | | | |
Time–Frequency Features | | | |
Table 11.
Test conditions and data information.
Table 11.
Test conditions and data information.
No. | Speed | Load | Datasets |
---|
1 | 2100 rmp | 12 kN | Bearing 1-1 Bearing 1-4 Bearing 1-2 Bearing 1-5 Bearing 1-3 |
2 | 2250 rpm | 11 kN | Bearing 2-1 Bearing 2-4 Bearing 2-2 Bearing 2-5 Bearing 2-3 |
3 | 2400 rpm | 10 kN | Bearing 3-1 Bearing 3-4 Bearing 3-2 Bearing 3-5 Bearing 3-3 |
Table 12.
Ranking table of feature correlation indicator on XJSU-SY dataset.
Table 12.
Ranking table of feature correlation indicator on XJSU-SY dataset.
Feature | Score | Feature | Score | Feature | Score |
---|
F14 | 0.933 | F3 | 0.834 | F12 | 0.447 |
F13 | 0.926 | F19 | 0.726 | F8 | 0.446 |
F6 | 0.915 | F27 | 0.672 | F17 | 0.443 |
F4 | 0.914 | F10 | 0.592 | F9 | 0.350 |
F2 | 0.911 | F26 | 0.564 | F22 | 0.331 |
F15 | 0.911 | F18 | 0.504 | F25 | 0.313 |
F1 | 0.900 | F11 | 0.501 | F23 | 0.288 |
F5 | 0.891 | F24 | 0.500 | F20 | 0.288 |
F16 | 0.890 | F21 | 0.468 | F7 | 0.213 |
Table 13.
Ranking table of feature monotonicity indicator on XJSU-SY dataset.
Table 13.
Ranking table of feature monotonicity indicator on XJSU-SY dataset.
Feature | Score | Feature | Score | Feature | Score |
---|
F14 | 0.343 | F13 | 0.131 | F11 | 0.065 |
F15 | 0.302 | F26 | 0.111 | F12 | 0.064 |
F2 | 0.301 | F25 | 0.109 | F19 | 0.059 |
F4 | 0.294 | F1 | 0.108 | F10 | 0.058 |
F16 | 0.292 | F23 | 0.102 | F8 | 0.044 |
F6 | 0.286 | F24 | 0.090 | F21 | 0.042 |
F3 | 0.284 | F22 | 0.084 | F17 | 0.034 |
F5 | 0.147 | F7 | 0.082 | F18 | 0.031 |
F27 | 0.145 | F20 | 0.075 | F19 | 0.011 |
Table 14.
Ranking table of feature robustness indicator on XJSU-SY dataset.
Table 14.
Ranking table of feature robustness indicator on XJSU-SY dataset.
Feature | Score | Feature | Score | Feature | Score |
---|
F8 | 0.410 | F1 | 0.376 | F11 | 0.364 |
F3 | 0.385 | F27 | 0.368 | F12 | 0.364 |
F16 | 0.378 | F13 | 0.368 | F19 | 0.362 |
F2 | 0.378 | F20 | 0.368 | F21 | 0.359 |
F4 | 0.378 | F9 | 0.367 | F22 | 0.358 |
F6 | 0.378 | F7 | 0.367 | F23 | 0.357 |
F15 | 0.378 | F17 | 0.366 | F24 | 0.356 |
F14 | 0.377 | F18 | 0.366 | F25 | 0.353 |
F5 | 0.377 | F10 | 0.366 | F26 | 0.352 |
Table 15.
Bearing health indicator evaluation on XJSU-SY dataset.
Table 15.
Bearing health indicator evaluation on XJSU-SY dataset.
| Model | Bearing 1-1 | Bearing 2-1 | Bearing 3-1 |
---|
Index | | Transformer | LSTM | Transformer | LSTM | Transformer | LSTM |
---|
Correlation | 0.928 | 0.889 | 0.859 | 0.809 | 0.391 | 0.376 |
Monotonicity | 0.618 | 0.350 | 0.199 | 0.263 | 0.027 | 0.016 |
Robustness | 0.974 | 0.963 | 0.996 | 0.992 | 0.956 | 0.943 |
Model | PCA | KPCA | PCA | KPCA | PCA | KPCA |
Correlation | 0.901 | 0.978 | 0.754 | 0.625 | 0.226 | 0.472 |
Monotonicity | 0.084 | 0.025 | 0.076 | 0.138 | 0.006 | 0.053 |
Robustness | 0.979 | 0.990 | 0.978 | 0.996 | 0.984 | 0.990 |
Model | MAFFN | MSM | MAFFN | MSM | MAFFN | MSM |
Correlation | 0.916 | 0.873 | 0.852 | 0.856 | 0.401 | 0.357 |
Monotonicity | 0.158 | 0.095 | 0.226 | 0.351 | 0.197 | 0.024 |
Robustness | 0.980 | 0.968 | 0.991 | 0.962 | 0.983 | 0.969 |
Table 16.
The computational time metrics on Case 2.
Table 16.
The computational time metrics on Case 2.
Model | Training Time (s/Epoch) | Inference Time (ms/Sample) | Sequence Length Support |
---|
LSTM | | | |
Transformer | | | |
Table 17.
The two models were compared with different sequence lengths.
Table 17.
The two models were compared with different sequence lengths.
Sequence Length | LSTM Accuracy (%) | Transformer Accuracy (%) | LSTM Training Stability |
---|
256 | 90.7 | 91.5 | Stable |
1024 | 93.4 | 96.3 | Gradient vanishing |
Table 18.
Ablation study on model components for Case 1.
Table 18.
Ablation study on model components for Case 1.
Configuration | Monotonicity | Robustness | Trendability |
---|
Full Model | 0.95 | 0.89 | 0.91 |
No Intersection Clustering | 0.87 (−8.4%) | 0.82 (−7.8%) | 0.873 (−8.8%) |
Replaced by PCA | | | |
Time–Frequency Features | 0.84 (−2.4%) | 0.86 (−8.9%) | 0.84 (−15.1%) |