Analysis of Corrosion by Speckle Polarimetry
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Near and Far Fields
2.3. Experimental Setup and Modus Operandi
2.3.1. Far Field Setup
2.3.2. Near Field Setup
3. Results
3.1. Corrosion of the Samples
3.2. Optical Measurements
3.2.1. Far Field Measurements
3.2.2. Measurements in the near Field
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DOP | Degree of polarization |
M0 | Sample 0 |
M1 | Sample 1 |
M2 | Sample 2 |
M3 | Sample 3 |
M4 | Sample 4 |
M5 | Sample 5 |
Appendix A
References
- Simmers, G.E.; Sodanoa, H.A.; Parkb, G.; Inmana, D.J. Impedance based corrosion detection. In Proceedings of the SPIE—The International Society for Optical Engineering; SPIE: Bellingham, WA, USA, 2005; Volume 5767, pp. 328–339. [Google Scholar]
- Li, W.; Gao, S.; Liu, T.; Zou, D.; Luo, W. 2021 Development of a Novel Corrosion Sensor Based on Electromechnical Impedance Instrumented Piezoelectric-Metal Transducer. In Proceedings of the Earth and Space 2021: Materials, Structures, Dynamics, and Control in Extreme Environments, Virtually, 19–23 April 2021. [Google Scholar]
- Xia, D.H.; Song, S.; Behnamian, Y.; Luo, J.L.; Huet, F. Review—Electrochemical noise applied in corrosion Science: Theoretical and mathematical models towards quantitative analysis. J. Electrochem. Soc. 2020, 167, 081507. [Google Scholar] [CrossRef]
- Sullivana, J.; Mehrabana, S.; Elvins, J. In situ monitoring of the microstructural corrosion mechanisms of zinc–magnesium–aluminium alloys using time lapse microscopy. Corros. Sci. 2011, 53, 2208–2215. [Google Scholar] [CrossRef]
- Laleha, M.; Jurak, T.; Gusieva, K.; Williams, J.; Renshaw, W.; Correnti, S.; Hodges, J.; Gazder Azdiar, A. New insights into corrosion initiation and propagation in a hot-dip Al-Zn-Mg-Si alloy coating via multiscale analytical microscopy. Corros. Sci. 2025, 25, 112695. [Google Scholar] [CrossRef]
- Holme, B.; Lunder, O. Characterisation of pitting corrosion by white light interferometry. Corros. Sci. 2007, 49, 391–401. [Google Scholar] [CrossRef]
- Geary, S.; McMurray, H.N.; de Vooys, A.C.A. High resolution characterization of pitting corrosion using a novel environmental SVET and white light interferometry. ECS Trans. 2013, 50, 37–51. [Google Scholar] [CrossRef]
- Heuer, J.; Luttge, A. Kinetics of pipeline steel corrosion studied by Raman spectroscopy-coupled vertical scanning interferometry. Npj Mater. Degrad. 2018, 2, 40. [Google Scholar] [CrossRef]
- Delluva, A.K.; Cook, R.L.; Peppel, M.; Diaz, S.; Martin, R.M.; Nguyen, V.T.; Elliott, J.E.; Biller, J.R. In situ Raman spectroscopy for early corrosion detection in coated AA2024-T3. Sensors 2025, 25, 179. [Google Scholar] [CrossRef]
- Danilov, V.A.; Merson, D.L. On the quantitative assessment of corrosion damages of aluminum at the early stages using confocal laser scanning microscopy. Lett. Mater. 2022, 12, 261–265. [Google Scholar] [CrossRef]
- Kotenev, V.A.; Maksaeva, L.B.; Petrunin, M.A. Control of local corrosion and fracture of metals in optical models of narrow crevices, gaps and cracks using ellipsometry technique. Prot. Met. Phys. Chem. Surf. 2016, 52, 751–756. [Google Scholar] [CrossRef]
- Kasperek, J.; Verchere, D.; Jacquet, D.; Phillips, N. Analysis of the corrosion products on galvanized steels by FTIR spectroscopy. Mater. Chem. Phys. 1998, 56, 205–213. [Google Scholar] [CrossRef]
- Le Bozec, N.; Persson, D.; Nazarov, A.; Thierry, D. Investigation of filiform corrosion on coated aluminum alloys by FTIR microspectroscopy and scanning Kelvin probe. J. Electrochem. Soc. 2002, 149, B403–B408. [Google Scholar] [CrossRef]
- Labbé, J.P.; Lédion, J.; Hui, F. Infrared spectrometry for solid phase analysis: Corrosion rusts. Corros. Sci. 2008, 50, 1228–1234. [Google Scholar] [CrossRef]
- Sajan, M.R.; Radha, T.S.; Ramprasad, B.S.; Gopal, E.S.R. Measurement of the corrosion rate of aluminum in sodium hydroxide using holographic interferometry. Opt. Lasers Eng. 1991, 15, 183–188. [Google Scholar] [CrossRef]
- Habib, K. Holographic interferometry of polarized and loaded metallic electrodes in aqueous solution. Appl. Optics. 1990, 29, 1867–1868. [Google Scholar] [CrossRef]
- Lia, L.; Wang, C.; Chen, S.; Yang, X.; Yuan, B.; Jia, H. An investigation on general corrosion and pitting of iron with the in-line digital holography. Electrochim. Acta. 2008, 53, 3109–3119. [Google Scholar] [CrossRef]
- Pourvais, Y.; Asgari, P.; Abdollahi, P.; Khamedi, R.; Moradi, A.R. Microstructural surface characterization of stainless and plain carbon steel using digital holographic microscopy. J. Opt. Soc. Am. B 2017, 34, B36–B41. [Google Scholar] [CrossRef]
- Radha, T.S.; Ramprasad, B.S. A simple method for measuring the etch depth in metallic specimens using speckle photography. J. Electrochem. Soc. India 1985, 34, 149–150. [Google Scholar]
- Fricke-Begemann, T.; Gülker, G.; Hinsch, K.D.; Wolff, K. Corrosion monitoring with speckle correlation. Appl. Opt. 1999, 38, 5948–5955. [Google Scholar] [CrossRef]
- Dai, Y.Z.; Kato, A.; Chaing, F.P. Fatigue monitoring by laser speckle. Int. J. Fatigue 1991, 13, 227–232. [Google Scholar] [CrossRef]
- Steckenrider, J.S.; Wagner, J.W. Computed speckle decorrelation (CSD) for the study of fatigue damage. Opt. Lasers Eng. 1995, 22, 3–15. [Google Scholar] [CrossRef]
- Shi, H.; Ruan, C.; Li, X. Study on the initiation stage of stress corrosion of an aluminum alloy using the subjective speckle technique. Mater. Sci. Eng. A 2006, 419, 218–224. [Google Scholar] [CrossRef]
- Jin, F.; Chiang, F.P. Detection of Crevice Corrosion Using Electronic Speckle Pattern Interferometry. In Proceedings of the CORROSION 1995, Orlando, FL, USA, 26–31 March 1995. [Google Scholar]
- Mayorga-Cruz, D.; Padilla-Sosa, P.; Cerecedo-Núñez, H.H. Detection of corrosion by digital speckle pattern interferometry. In Proceedings of the SPIE—Speckle06: Speckles, From Grains to Flowers, Nimes, France, 13–15 September 2006. [Google Scholar]
- Singh Raman, R.K.; Bayles, R. Detection of decohesion/failure of paint/coating using electronic speckle pattern interferometry. Eng. Fail. Anal. 2006, 13, 1051–1056. [Google Scholar] [CrossRef]
- Malaret, F. Exact calculation of corrosion rates by the weight-loss method. Exp. Results 2022, 3, 1–12. [Google Scholar] [CrossRef]
- ASTM G1-03; Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. ASTM International: West Conshohocken, PA, USA, 2004.
- ASTM G31; Standard Guide for Laboratory Immersion Corrosion Testing of Metals. ASTM International: West Conshohocken, PA, USA, 2004.
- James, D.F.V. Change of polarization of light beams on propagation in free space. J. Opt. Soc. Am. A 1994, 11, 1641–1643. [Google Scholar] [CrossRef]
- Wolf, E. Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A 2003, 312, 263–267. [Google Scholar] [CrossRef]
- Wolf, E. Correlation-induced changes in the degree of polarization, the degree of coherence, and the spectrum of random electromagnetic beams on propagation. Opt. Lett. 2003, 28, 1078–1080. [Google Scholar] [CrossRef] [PubMed]
- Collet, E. Polarized Light: Fundamentals and Applications; Marcel Dekker: New York, USA, 1993; p. 49. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gascón, F.; Rodríguez, J.; Bayón, A.; Nieves, F.J.; Salazar-Bloise, F. Analysis of Corrosion by Speckle Polarimetry. Sensors 2025, 25, 4941. https://doi.org/10.3390/s25164941
Gascón F, Rodríguez J, Bayón A, Nieves FJ, Salazar-Bloise F. Analysis of Corrosion by Speckle Polarimetry. Sensors. 2025; 25(16):4941. https://doi.org/10.3390/s25164941
Chicago/Turabian StyleGascón, Francisco, Jorge Rodríguez, Ana Bayón, Francisco J. Nieves, and Félix Salazar-Bloise. 2025. "Analysis of Corrosion by Speckle Polarimetry" Sensors 25, no. 16: 4941. https://doi.org/10.3390/s25164941
APA StyleGascón, F., Rodríguez, J., Bayón, A., Nieves, F. J., & Salazar-Bloise, F. (2025). Analysis of Corrosion by Speckle Polarimetry. Sensors, 25(16), 4941. https://doi.org/10.3390/s25164941