Combined Effect of tDCS and GRASP for Upper Limb Rehabilitation in Stroke: A Clinical and Accelerometric Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Outcomes
2.3. Clinical Measures
2.4. Upper Limb Activity Data Collection and Processing
- Vector Magnitude (VM) counts, which represent a composite measure of the tri-axial accelerometric counts and is calculated through the following equation:
- Minutes of use: sum of the time periods (expressed in minutes) in which the VM value was higher than zero [33] calculated separately for each limb.
- Use Ratio (UR): the ratio between the minutes of use calculated for the affected and non-affected limb, regardless of performed movement intensity [33]. In the case of perfectly balanced use of the two limbs, UR assumes a value = 1. Otherwise, values lower than 1 and higher than 1 denote longer periods of use of either the non-affected or affected limb, respectively.
- Magnitude Ratio (MR): the natural logarithm of the ratio between the VM counts associated with the affected and the non-affected limb activity [33,34]. In this case, perfect symmetry (in terms of intensity of use) is indicated by a UR = 0, while negative (positive) values indicate higher intensity of activity of the non-affected (affected) limb.
- Mono Arm Use Index (MAUI): a parameter which expresses the sum of the magnitude of all independent movements of each arm (i.e., a movement of one limb when the other is inactive). MAUI, which was designed to quantify the frequency of independent movement in everyday activities, can be obtained by the following equation [35]:
- The Bilateral Arm Use Index (BAUI) is expressed by the equation [35]
2.5. Treatment Protocol
2.6. a-tDCS Protocol
2.7. Modified GRASP Protocol
2.8. Statistical Analysis
3. Results
Accelerometry-Based Metrics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
9HPT | Nine-Hole Peg Test |
η2 | Eta-squared |
ADL | Activities of daily living |
a-tDCS | Anodal Transcranial Current Stimulation |
AUL | Affected upper limb |
BAUI | Bilateral Arm Use Index |
BBT | Box and Block test |
BDI-II | Beck Depression Inventory—II edition |
BI | Barthel Index |
c-tDCS | Cathodic Transcranial Current Stimulation |
FMA-UE | Fugl-Meyer Assessment—Upper Extremity |
GRASP | Graded Repetitive Arm Supplementary Program |
HGS | Hand Grip Strength |
LACI | Lacunar infarcts |
MAS | Modified Ashworth Scale |
MAUI | Mono Arm Use Index |
MoCA | Montreal Cognitive Assessment |
MR | Magnitude Ratio (MR) |
MRC | Medical Research Council |
NIBS | Non-invasive brain stimulation |
OT | Occupational therapist |
PACI | Partial anterior circulation infarcts |
POCI | Posterior circulation infarcts |
QOL | Quality of life |
RM-ANOVA | Analysis of variance for repeated measures |
SD | Standard Deviation |
TACI | Total anterior circulation infarcts |
TCT | Trunk Control Test |
tDCS | Transcranial Direct Current Stimulation |
UL | Upper limb |
UR | Use Ratio |
VM | Vector Magnitude |
References
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.; Sacco, R.L.; Hacke, W.; Fisher, M.; Pandian, J.; Lindsay, P. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int. J. Stroke 2022, 17, 18–29. [Google Scholar] [CrossRef]
- Broeks, J.G.; Lankhorst, G.J.; Rumping, K.; Prevo, A.J.H. The long-term outcome of arm function after stroke: Results of a follow-up study. Disabil. Rehabil. 1999, 21, 357–364. [Google Scholar] [CrossRef]
- Faria-Fortini, I.; Michaelsen, S.M.; Cassiano, J.G.; Teixeira-Salmela, L.F. Upper extremity function in stroke subjects: Relationships between the international classification of functioning, disability, and health domains. J. Hand Ther. 2011, 24, 257–265. [Google Scholar] [CrossRef]
- Keppel, C.C.; Crowe, S.F. Changes to body image and self-esteem following stroke in young adults. Neuropsychol. Rehabil. 2000, 10, 15–31. [Google Scholar] [CrossRef]
- Wyller, T.B.; Sveen, U.; Sedring, K.M.; Pettersen, A.M.; Bautz-Holter, E. Subjective well-being one year after stroke. Clin. Rehabil. 1997, 11, 139–145. [Google Scholar] [CrossRef]
- Johnson, C.O.; Nguyen, M.; Roth, G.A.; Nichols, E.; Alam, T.; Abate, D.; Abd-Allah, F.; Abdelalim, A.; Abraha, H.N.; Abu-Rmeileh, N.M.; et al. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 439–458. [Google Scholar] [CrossRef]
- Nakayama, H.; Stig Jørgensen, H.; Otto Raaschou, H.; Skyhøj Olsen, T. Recovery of upper extremity function in stroke patients: The Copenhagen stroke study. Arch. Phys. Med. Rehabil. 1994, 75, 394–398. [Google Scholar] [CrossRef]
- Kwah, L.K.; Harvey, L.A.; Diong, J.; Herbert, R.D. Models containing age and NIHSS predict recovery of ambulation and upper limb function six months after stroke: An observational study. J. Physiother. 2013, 59, 189–197. [Google Scholar] [CrossRef]
- Tenberg, S.; Mueller, S.; Vogt, L.; Roth, C.; Happ, K.; Scherer, M.; Behringer, M.; Niederer, D. Comparative Effectiveness of Upper Limb Exercise Interventions in Individuals With Stroke: A Network Meta-Analysis. Stroke 2023, 54, 1839–1853. [Google Scholar] [CrossRef]
- Ahmed, I.; Mustafaoglu, R.; Rossi, S.; Cavdar, F.A.; Agyenkwa, S.K.; Pang, M.Y.C.; Straudi, S. Non-Invasive Brain Stimulation Techniques for the Improvement of Upper Limb Motor Function and Performance in Activities of Daily Living After Stroke: A Systematic Review and Network Meta-Analysis; Elsevier Inc.: Amsterdam, The Netherlands, 2023; Volume 104, ISBN 0000000319720. [Google Scholar]
- Gomez Palacio Schjetnan, A.; Faraji, J.; Metz, G.A.; Tatsuno, M.; Luczak, A. Transcranial direct current stimulation in stroke rehabilitation: A review of recent advancements. Stroke Res. Treat. 2013, 2013, 170256. [Google Scholar] [CrossRef]
- Klomjai, W.; Lackmy-Vallée, A.; Roche, N.; Pradat-Diehl, P.; Marchand-Pauvert, V.; Katz, R. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation in motor rehabilitation after stroke: An update. Ann. Phys. Rehabil. Med. 2015, 58, 220–224. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef]
- Fregni, F.; El-Hagrassy, M.M.; Pacheco-Barrios, K.; Carvalho, S.; Leite, J.; Simis, M.; Brunelin, J.; Nakamura-Palacios, E.M.; Marangolo, P.; Venkatasubramanian, G.; et al. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int. J. Neuropsychopharmacol. 2021, 24, 256–313. [Google Scholar] [CrossRef]
- Navarro-López, V.; del-Valle-Gratacós, M.; Carratalá-Tejada, M.; Cuesta-Gómez, A.; Fernández-Vázquez, D.; Molina-Rueda, F. The efficacy of transcranial direct current stimulation on upper extremity motor function after stroke: A systematic review and comparative meta-analysis of different stimulation polarities. PM R 2024, 16, 496–510. [Google Scholar] [CrossRef]
- Harris, J.E.; Eng, J.J.; Miller, W.C.; Dawson, A.S. A self-administered graded repetitive arm supplementary program (GRASP) improves arm function during inpatient stroke rehabilitation: A multi-site randomized controlled trial. Stroke 2009, 40, 2123–2128. [Google Scholar] [CrossRef]
- Singer, B.; Garcia-Vega, J. The Fugl-Meyer Upper Extremity Scale. J. Physiother. 2017, 63, 53. [Google Scholar] [CrossRef]
- Urbin, M.A.; Waddell, K.J.; Lang, C.E. Acceleration metrics are responsive to change in upper extremity function of stroke survivors. Arch. Phys. Med. Rehabil. 2015, 96, 854–861. [Google Scholar] [CrossRef]
- Chen, H.M.; Chen, C.C.; Hsueh, I.P.; Huang, S.L.; Hsieh, C.L. Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabil. Neural Repair 2009, 23, 435–440. [Google Scholar] [CrossRef]
- Heller, A.; Wade, D.T.; Wood, V.A.; Sunderland, A.; Hewer, R.L.; Ward, E. Heller 1987_arm function after stroke NHPT. J. Neurol. Neurosurg. Psychiatry 1987, 50, 714–719. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Volland, G.; Kashman, N.; Weber, K. Adult norms for the Box and Block Test of manual dexterity. Am. J. Occup. Ther. Off. Publ. Am. Occup. Ther. Assoc. 1985, 39, 386–391. [Google Scholar] [CrossRef]
- Park, J.G.; Lee, K.W.; Kim, S.B.; Lee, J.H.; Kim, Y.H. Effect of decreased skeletal muscle index and hand grip strength on functional recovery in subacute ambulatory stroke patients. Ann. Rehabil. Med. 2019, 43, 535–543. [Google Scholar] [CrossRef]
- Bohannon, R.W. Motricity index scores are valid indicators of paretic upper extremity strength following stroke. J. Phys. Ther. Sci. 1999, 11, 59–61. [Google Scholar] [CrossRef]
- Gregson, J.M.; Leathley, M.J.; Moore, A.P.; Smith, T.L.; Sharma, A.K.; Watkins, C.L. Reliability of measurements of muscle tone and muscle power in stroke patients. Age Ageing 2000, 29, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Smith, M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar] [PubMed]
- Shah, S.; Vanclay, F.; Cooper, B. Improving the sensitivity of the Barthel Index for stroke rehabilitation. J. Clin. Epidemiol. 1989, 42, 703–709. [Google Scholar] [CrossRef]
- Conti, S.; Bonazzi, S.; Laiacona, M.; Masina, M.; Coralli, M.V. Montreal Cognitive Assessment (MoCA)-Italian version: Regression based norms and equivalent scores. Neurol. Sci. 2015, 36, 209–214. [Google Scholar] [CrossRef]
- Paolucci, S.; Gandolfo, C.; Provinciali, L.; Torta, R.; Toso, V. The Italian multicenter observational study on post-stroke depression (DESTRO). J. Neurol. 2006, 253, 556–562. [Google Scholar] [CrossRef]
- Pellicciari, L.; Basagni, B.; Paperini, A.; Campagnini, S.; Sodero, A.; Hakiki, B.; Castagnoli, C.; Politi, A.M.; Avila, L.; Barilli, M.; et al. Trunk Control Test as a Main Predictor of the Modified Barthel Index Score at Discharge From Intensive Post-acute Stroke Rehabilitation: Results From a Multicenter Italian Study. Arch. Phys. Med. Rehabil. 2024, 105, 326–334. [Google Scholar] [CrossRef]
- Fini, N.A.; Burge, A.T.; Bernhardt, J.; Holland, A.E. Two Days of Measurement Provides Reliable Estimates of Physical Activity Poststroke: An Observational Study. Arch. Phys. Med. Rehabil. 2019, 100, 883–890. [Google Scholar] [CrossRef]
- Barth, J.; Geed, S.; Mitchell, A.; Lum, P.S.; Edwards, D.F.; Dromerick, A.W. Characterizing upper extremity motor behavior in the first week after stroke. PLoS ONE 2020, 15, e0221668. [Google Scholar] [CrossRef]
- Lang, C.E.; Waddell, K.J.; Klaesner, J.W.; Bland, M.D. A method for quantifying upper limb performance in daily life using accelerometers. J. Vis. Exp. 2017, 2017, 55673. [Google Scholar] [CrossRef]
- Bailey, R.R.; Klaesner, J.W.; Lang, C.E. An accelerometry-based methodology for assessment of real-world bilateral upper extremity activity. PLoS ONE 2014, 9, e103135. [Google Scholar] [CrossRef]
- Hoyt, C.R.; Van, A.N.; Ortega, M.; Koller, J.M.; Everett, E.A.; Nguyen, A.L.; Lang, C.E.; Schlaggar, B.L.; Dosenbach, N.U.F. Detection of Pediatric Upper Extremity Motor Activity and Deficits With Accelerometry. JAMA Netw. Open 2019, 2, e192970. [Google Scholar] [CrossRef] [PubMed]
- Bamford, J.; Sandercock, P.; Dennis, M.; Warlow, C.; Burn, J. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 1991, 337, 1521–1526. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Cohen, L.G.; Wassermann, E.M.; Priori, A.; Lang, N.; Antal, A.; Paulus, W.; Hummel, F.; Boggio, P.S.; Fregni, F.; et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008, 1, 206–223. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Luber, B.; Brem, A.K.; Bikson, M.; Brunoni, A.R.; Cohen Kadosh, R.; Dubljević, V.; Fecteau, S.; Ferreri, F.; Flöel, A.; et al. Non-invasive brain stimulation and neuroenhancement. Clin. Neurophysiol. Pract. 2022, 7, 146–165. [Google Scholar] [CrossRef] [PubMed]
- Brunoni, A.R.; Amadera, J.; Berbel, B.; Volz, M.S.; Rizzerio, B.G.; Fregni, F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int. J. Neuropsychopharmacol. 2011, 14, 1133–1145. [Google Scholar] [CrossRef]
- Rocha, S.; Silva, E.; Foerster, Á.; Wiesiolek, C.; Chagas, A.P.; Machado, G.; Baltar, A.; Monte-Silva, K. The impact of transcranial direct current stimulation (tDCS) combined with modified constraint-induced movement therapy (mCIMT) on upper limb function in chronic stroke: A double-blind randomized controlled trial. Disabil. Rehabil. 2016, 38, 653–660. [Google Scholar] [CrossRef]
- Elsner, B.; Kugler, J.; Pohl, M.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst. Rev. 2020, 2020, CD009645. [Google Scholar] [CrossRef]
- Van Hoornweder, S.; Vanderzande, L.; Bloemers, E.; Verstraelen, S.; Depestele, S.; Cuypers, K.; van Dun, K.; Strouwen, C.; Meesen, R. The effects of transcranial direct current stimulation on upper-limb function post-stroke: A meta-analysis of multiple-session studies. Clin. Neurophysiol. 2021, 132, 1897–1918. [Google Scholar] [CrossRef]
- Pau, M.; Leban, B.; Deidda, M.; Porta, M.; Coghe, G.; Cattaneo, D.; Cocco, E. Use of wrist-worn accelerometers to quantify bilateral upper limb activity and asymmetry under free-living conditions in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2021, 53, 103081. [Google Scholar] [CrossRef]
- Halakoo, S.; Ehsani, F.; Masoudian, N.; Zoghi, M.; Jaberzadeh, S. Does anodal trans-cranial direct current stimulation of the damaged primary motor cortex affects wrist flexor muscle spasticity and also activity of the wrist flexor and extensor muscles in patients with stroke?: A Randomized Clinical Trial. Neurol. Sci. 2021, 42, 2763–2773. [Google Scholar] [CrossRef]
- Molero-Chamizo, A.; Salas Sánchez, Á.; Álvarez Batista, B.; Cordero García, C.; Andújar Barroso, R.; Rivera-Urbina, G.N.; Nitsche, M.A.; Alameda Bailén, J.R. Bilateral Motor Cortex tDCS Effects on Post-Stroke Pain and Spasticity: A Three Cases Study. Front. Pharmacol. 2021, 12, 624582. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ge, L.; Hu, H.; Yan, L.; Li, L. Effects of Non-Invasive Brain Stimulation on Post-Stroke Spasticity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Brain Sci. 2022, 12, 836. [Google Scholar] [CrossRef] [PubMed]
- Elsner, B.; Kugler, J.; Pohl, M.; Mehrholz, J. Transcranial direct current stimulation for improving spasticity after stroke: A systematic review with meta-analysis. J. Rehabil. Med. 2016, 48, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Kanekar, N.; Aruin, A.S. Aging and balance control in response to external perturbations: Role of anticipatory and compensatory postural mechanisms. Age 2014, 36, 1067–1077. [Google Scholar] [CrossRef]
Number of subjects | 30 |
Males/Females | 18 (60%)/12 (40%) |
Schooling (years) | 9.10 (4.35) |
Stroke type | |
Ischemic/Hemorrhagic | 28 (93.30%)/2 (6.70%) |
Body side affected | |
Right/Left | 15 (50%)/15 (50%) |
Handedness | |
Right/Left | 28 (93.30%)/2 (6.70%) |
Bamford classification | |
PACI | 5 (17.90%) |
TACI | 7 (25%) |
LACI | 5 (17.90%) |
POCI | 11 (39.20%) |
Autonomous walking before stroke | 30 (100%) |
Functional independence before stroke | 30 (100%) |
BDI-II | 12 (8.23) |
MoCA (adjusted score) | 20.38 (3.84) |
TCT | 65.4 (29.07) |
Parameter (AUL) | T0 | T1 | Z ** | p * |
---|---|---|---|---|
FMA-UE | 38.65 (15.37) | 50.72 (10.98) | −4.532 | 0.0004 † |
9HPT (s) | 185.44 (122.61) | 120.66 (114.76) | −4.107 | 0.0001 † |
BBT (blocks) | 19.55 (16.9) | 30.13 (17.97) | −4.523 | 0.0004 † |
HGS (kg) | 6.79 (9.81) | 9.53 (9.62) | −3.989 | 0.0001 † |
MRC-Triceps | 3.27 (1.22) | 4.05 (0.90) | −3.636 | 0.0006 † |
MRC-Biceps | 3.31 (1.07) | 4 (1) | −3.947 | 0.0001 † |
MRC-Shoulder (Abductors) | 3.03 (1.35) | 3.9 (0.98) | −3.686 | 0.0002 † |
MRC-Wrist flexors | 3.10 (1.37) | 3.9 (1.11) | −3.750 | 0.0004 † |
MRC-Wrist Extensors | 3.07 (1.46) | 3.72 (1.33) | −3.727 | 0.0001 † |
MRC-Finger Flexors | 3.07 (1.46) | 3.9 (1.14) | −3.714 | 0.0002 † |
MRC-Finger Extensors | 2.90 (1.54) | 3.55 (1.27) | −3.256 | 0.001 † |
MAS-Triceps | 0.13 (0.57) | 0.10 (0.55) | −1.000 | 0.317 |
MAS-Biceps | 0.28 (0.54) | 0.23 (0.50) | −1.134 | 0.257 |
MAS-Shoulder (Adductors) | 0.13 (0.41) | 0.13 (0.43) | 0 | 1.000 |
MAS-Wrist Flexors | 0.18 (0.48) | 0.17 (0.46) | −0.276 | 0.783 |
MAS-Wrist Extensors | 0.10 (0.55) | 0.07 (0.36) | −1.000 | 0.317 |
MAS-Finger Flexors | 0.18 (0.62) | 0.20 (0.55) | −0.272 | 0.785 |
MAS-Finger Extensors | 0.05 (0.27) | 0.07 (0.36) | −1.000 | 0.317 |
BI | 44.82 (19.01) | 76.72 (21.01) | −4.794 | 0.0001 † |
Parameter | T0 | T1 | |
---|---|---|---|
Vector Magnitude (106 counts/day) | Affected Limb | 0.63 (0.45) | 0.86 (0.64) † |
Non-affected Limb | 1.65 (0.55) | 1.82 (0.65) | |
Use Ratio * | 0.54 (0.26) | 0.64 (0.24) | |
Magnitude Ratio ** | −1.19 (0.69) | −0.95 (0.58) | |
Mono Arm Use Index (MAUI) * | 0.23 (0.22) | 0.30 (0.29) | |
Bilateral Arm Use Index (BAUI) * | 0.65 (0.12) | 0.68 (0.12) |
Vector Magnitude vs. | Spearman’s rho |
---|---|
FMA-UE | NS |
9HPT | −0.857 * |
BBT | 0.777 * |
HGS | 0.773 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grange, E.; Giovanni, R.D.; Masuccio, F.G.; Tipa, V.; Dileo, L.; Bordino, A.; Porta, M.; Leban, B.; Rolla, M.; Pau, M.; et al. Combined Effect of tDCS and GRASP for Upper Limb Rehabilitation in Stroke: A Clinical and Accelerometric Pilot Study. Sensors 2025, 25, 4907. https://doi.org/10.3390/s25164907
Grange E, Giovanni RD, Masuccio FG, Tipa V, Dileo L, Bordino A, Porta M, Leban B, Rolla M, Pau M, et al. Combined Effect of tDCS and GRASP for Upper Limb Rehabilitation in Stroke: A Clinical and Accelerometric Pilot Study. Sensors. 2025; 25(16):4907. https://doi.org/10.3390/s25164907
Chicago/Turabian StyleGrange, Erica, Rachele Di Giovanni, Fabio Giuseppe Masuccio, Virginia Tipa, Luca Dileo, Alessandra Bordino, Micaela Porta, Bruno Leban, Martina Rolla, Massimiliano Pau, and et al. 2025. "Combined Effect of tDCS and GRASP for Upper Limb Rehabilitation in Stroke: A Clinical and Accelerometric Pilot Study" Sensors 25, no. 16: 4907. https://doi.org/10.3390/s25164907
APA StyleGrange, E., Giovanni, R. D., Masuccio, F. G., Tipa, V., Dileo, L., Bordino, A., Porta, M., Leban, B., Rolla, M., Pau, M., & Solaro, C. M. (2025). Combined Effect of tDCS and GRASP for Upper Limb Rehabilitation in Stroke: A Clinical and Accelerometric Pilot Study. Sensors, 25(16), 4907. https://doi.org/10.3390/s25164907