A Low-Cost Validated Two-Camera 3D Videogrammetry System Applicable to Kinematic Analysis of Human Motion
Abstract
Highlights
- It is a low-cost, high precision 3D videogrammetry system.
- It has similar accuracy and repeatability to Vicon®, a commercial system for kinematic analysis of musculoskeletal models.
- It has increased accessibility to vision systems for kinematic analysis with high accuracy for research and clinical applications.
- It has greater modularity than commercial systems.
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Vision System
2.1.2. Optics
2.1.3. Calibration Pattern
2.1.4. Markers
2.1.5. Lighting System
2.2. Methods
2.2.1. Videogrammetric Process
Calibration
Processing Software
2.2.2. System Performance Evaluation
- In the first test, the markers were recorded while holding static for 10 s.
- In the second test, the marker support structure was manually moved randomly at low velocity within the working volume.
- In the third test, the structure was moved similarly but at a higher velocity.
2.2.3. System Applicability Assessment
Varying Environmental Conditions
- (a)
- Natural light was blocked and ambient light excluded, so that the scene was illuminated exclusively by the lighting system integrated into the videogrammetry setup, in order to assess the system’s performance in extremely low-light environments, (Figure 6a).
- (b)
- To assess the system’s performance under highly variable visible light conditions, natural light was permitted in the scene, and ambient illumination was added by orienting a white-light flash (wavelength 600 nm, 5500 K, 1000 w, positioned 1.5 m from the center of the working volume), operating at a frequency of 1 Hz, toward the center of the working area (Figure 6b).
- (c)
- The system was evaluated in a cluttered environment. For this purpose, numerous visual stimuli (objects with surfaces of varied colors, intensities, and textures) and low contrast background elements were placed around the working volume, and the appearance of walking subjects within the image planes was planned during the recording. In no case was marker occlusion allowed. Natural light was allowed into the scene while maintaining the UV-A system illumination setup (Figure 6c).
In Vitro Applicability
In Vivo Applicability
3. Results
3.1. Systems Performance Evaluation
3.2. System Applicability Assessment
3.2.1. Varying Environmental Conditions
3.2.2. In Vitro Applicability
3.2.3. In Vivo Applicability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Remondino, F. Videogrammetry for human movement analysis. In Proceedings of the Ninth International Symposium on 3D Analysis of Human Movement, Valenciennes, France, 28–30 June 2006. [Google Scholar]
- Gruen, A. Fundamentals of videogrammetry—A review. Hum. Mov. Sci. 1997, 16, 155–187. [Google Scholar] [CrossRef]
- Su, X.; Zhang, Q. Dynamic 3-D shape measurement method: A review. Opt. Lasers Eng. 2010, 48, 191–204. [Google Scholar] [CrossRef]
- Liu, T.; Burner, A.W.; Jones, T.W.; Barrows, D.A. Photogrammetric techniques for aerospace applications. Prog. Progress. Aerosp. Sci. 2012, 54, 1–58. [Google Scholar] [CrossRef]
- Jiang, R.; Jáuregui, D.V.; White, K.R. Close-range photogrammetry applications in bridge measurement: Literature review. Measurement 2008, 41, 823–834. [Google Scholar] [CrossRef]
- Baqersad, J.; Poozesh, P.; Niezrecki, C.; Avitabile, P. Photogrammetry and optical methods in structural dynamics—A review. Mech. Syst. Signal Process 2017, 86, 17–34. [Google Scholar] [CrossRef]
- Willneff, J.; Gruen, A. A New Spatio-Temporal Matching Algorithm for 3D-Particle Tracking Velocimetry; ETH Zurich: Zurich, Switzerland, 2002. [Google Scholar]
- Graves, S.S.; Burner, A.W. Development of an intelligent videogrammetric wind tunnel measurement system. Int. Soc. Opt. Photonics (SPIE) 2001, 4448, 120–131. [Google Scholar] [CrossRef]
- Ganci, G.; Handley, H. Automation in videogrammetry. Int. Arch. Photogramm. Remote Sens. 1998, 32, 53–58. [Google Scholar]
- Shortis, M.R.; Harvey, E.S. Design and calibration of an underwater stereo-video system for the monitoring of marine fauna populations. Int. Arch. Photogramm. Remote Sens. 1998, 32, 792–799. [Google Scholar]
- Bijhold, J.; Geradts, Z.J. Forensic photo/videogrammetry: Monte Carlo simulation of pixel and measurement errors. Int. Soc. Opt. Photonics (SPIE) 1999, 3576, 239–246. [Google Scholar] [CrossRef]
- Roncella, R.; Remondino, F.; Forlani, G. Photogrammetric bridging of GPS outages in mobile mapping. Int. Arch. Photogramm. Remote Sens. 2005, 5665, 308–319. [Google Scholar] [CrossRef]
- Leifer, J.; Weems, B.J.; Kienle, S.C.; Sims, A.M. Three-Dimensional Acceleration Measurement Using Videogrammetry Tracking Data. Exp. Mech. 2011, 51, 199–217. [Google Scholar] [CrossRef]
- Luo, P.F.; Chao, Y.J.; Sutton, M.A.; Peters, W.H. Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Exp. Mech. 1993, 33, 123–132. [Google Scholar] [CrossRef]
- Szeliski, R. Computer Vision: Algorithms and Applications; Springer: Cham, Switzerland, 2022; ISBN 978-3-030-34371-2. [Google Scholar]
- Ma, Y.; Kosecka, J.; Soatto, S.; Sastry, S.; Kosecka, J. An Invitation to 3-D Vision: From Images to Models; Springer Book Archive; Springer: New York, NY, USA, 2003; ISBN 978-1-4419-1846-8. [Google Scholar]
- Côrrea, D.; Balbinot, A. Experimental Videogrammetry and Accelerometry for the 2D Analysis of Human Motion. Sens. Transducers 2013, 150, 79–89. [Google Scholar]
- Neale, W.T.; Hessel, D.; Koch, D. Determining Position and Speed through Pixel Tracking and 2D Coordinate Transformation in a 3D Environment; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2016. [Google Scholar] [CrossRef]
- Bailey, A.; Funk, J.; Lessley, D.; Sherwood, C.; Crandall, J.; Neale, W.; Rose, N. Validation of a videogrammetry technique for analysing American football helmet kinematics. Sports Biomech. 2018, 19, 678–700. [Google Scholar] [CrossRef]
- Sancho-Bru, J.L.; Jarque-Bou, N.J.; Vergara, M.; Pérez-González, A. Validity of a simple videogrammetric method to measure the movement of all hand segments for clinical purposes. Proc. Inst. Mech. Eng. H 2014, 228, 182–189. [Google Scholar] [CrossRef]
- Sarro, K.J.; Silvatti, A.P.; Aliverti, A.; Barros, R.M.L. Proposition and Evaluation of a Novel Method Based on Videogrammetry to Measure Three-Dimensional Rib Motion during Breathing. J. Appl. Biomech. 2009, 25, 247–252. [Google Scholar] [CrossRef]
- Uhlrich, S.D.; Falisse, A.; Kidziński, Ł.; Muccini, J.; Ko, M.; Chaudhari, A.S.; Hicks, J.L.; Delp, S.L. OpenCap: Human movement dynamics from smartphone videos. PLoS Comput. Biol. 2023, 19, e1011462. [Google Scholar] [CrossRef]
- William, H. Mueller and Reynaldo Martorell. Reliability and accuracy of measurement. In Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- Queipo-De-Llano, A.; Perez-Blanca, A.; Ezquerro, F.; Luna-González, F. Simultaneous anterior and posterior compression of the pelvic ring with external fixation using a pre-tensed curved bar: A biomechanical study. Injury 2013, 44, 1787–1792. [Google Scholar] [CrossRef]
- Espejo-Reina, A.; Prado-Novoa, M.; Espejo-Baena, A.; Peña-Trabalon, A.; Perez-Blanca, A. Biomechanical consequences of anterior root detachment of the lateral meniscus and its reinsertion. Sci. Rep. 2022, 12, 6182. [Google Scholar] [CrossRef]
- Baker, R.; Leboeuf, F.; Reay, J.; Sangeux, M. The conventional gait model-success and limitations. In Handbook of Human Motion; Springer: Cham, Switzerland, 2018; Volume 1–3, pp. 489–508. [Google Scholar] [CrossRef]
- Carson, M.C.; Harrington, M.E.; Thompson, N.; O’Connor, J.J.; Theologis, T.N. Kinematic analysis of a multi-segment foot model for research and clinical applications: A repeatability analysis. J. Biomech. 2001, 34, 1299–1307. [Google Scholar] [CrossRef]
- Ezquerro, F.; Simón, A.; Prado, M.; Pérez, A. Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax-pelvis orientation. Med. Eng. Phys. 2004, 26, 11–22. [Google Scholar] [CrossRef]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 1990, 8, 383–392. [Google Scholar] [CrossRef]
- Perini, T.A.; Oliveira, G.L.D.; Ornellas, J.D.S.; Oliveira, F.P.D. Technical error of measurement in anthropometry *. Rev. Bras. Med. Esporte 2005, 11, 81–85. [Google Scholar] [CrossRef]
- Sevillano-Perez, E.; Prado-Novoa, M.; Postigo-Pozo, S.; Peña-Trabalon, A.; Guerado, E. L4 fixation is not necessary in L5-Iliac spinopelvic fixation after trauma, but coadjutant transilio-transsacral fixation is. Injury 2024, 55, 111378. [Google Scholar] [CrossRef]
- Wilke, H.J.; Grundler, S.; Ottardi, C.; Mathew, C.E.; Schlager, B.; Liebsch, C. In Vitro analysis of thoracic spinal motion segment flexibility during stepwise reduction of all functional structures. Eur. Spine J. 2020, 29, 179–185. [Google Scholar] [CrossRef]
- Smirnova, V.; Khamatnurova, R.; Kharin, N.; Yaikova, E.; Baltina, T.; Sachenkov, O. The Automatization of the Gait Analysis by the Vicon Video System: A Pilot Study. Sensors 2022, 22, 7178. [Google Scholar] [CrossRef]
- Van Criekinge, T.; Saeys, W.; Truijen, S.; Vereeck, L.; Sloot, L.H.; Hallemans, A. A full-body motion capture gait dataset of 138 able-bodied adults across the life span and 50 stroke survivors. Sci. Data 2023, 10, 852. [Google Scholar] [CrossRef] [PubMed]
- El Ghazouali, S.; Vissiere, A.; Lafon, L.F.; Bouazizi, M.L.; Nouira, H. Optimised calibration of machine vision system for close range photogrammetry based on machine learning. J. King Saud. Univ.-Comput. Inf. Sci. 2022, 34, 7406–7418. [Google Scholar] [CrossRef]
- Ramirez, H.; Velastin, S.A.; Meza, I.; Fabregas, E.; Makris, D.; Farias, G. Fall Detection and Activity Recognition Using Human Skeleton Features. IEEE Access 2021, 9, 33532–33542. [Google Scholar] [CrossRef]
- Rodriguez Caballero, J.J.; Cozar Macias, O.D.; Estebanez Campos, M.B.; Garcia-Vacas, F.; Prado-Novoa, M.; Galisteo Romero, R.P. Patient Walking Device. Utility model, 2022. Available online: https://patents.google.com/patent/ES1315671U/en?q=(maria+belen+estebanez+campos)&oq=maria+belen+estebanez+campos (accessed on 25 July 2025).
- Deng, W.; O’Brien, M.K.; Andersen, R.A.; Rai, R.; Jones, E.; Jayaraman, A. A systematic review of portable technologies for the early assessment of motor development in infants. NPJ Digit. Med. 2025, 8, 63. [Google Scholar] [CrossRef] [PubMed]
Videogrammetry | Vicon® | |||||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Close-range volume | Statics | Distance O-X | 79.69 | 0.02 | 79.61 | 0.02 |
Distance O-Y | 120.76 | 0.02 | 120.71 | 0.02 | ||
Low velocity | Distance O-X | 79.63 | 0.06 | 79.72 | 0.09 | |
Distance O-Y | 120.48 | 0.16 | 120.66 | 0.06 | ||
Higher velocity | Distance O-X | 79.66 | 0.09 | 79.66 | 0.08 | |
Distance O-Y | 120.28 | 0.14 | 120.29 | 0.05 | ||
More distant volume | Statics | Distance O-X | 79.88 | 0.04 | 79.81 | 0.04 |
Distance O-Y | 120.73 | 0.04 | 120.37 | 0.03 | ||
Low velocity | Distance O-X | 79.72 | 0.19 | 79.76 | 0.23 | |
Distance O-Y | 120.67 | 0.18 | 120.55 | 0.18 | ||
Higher velocity | Distance O-X | 79.66 | 0.17 | 79.77 | 0.22 | |
Distance O-Y | 120.52 | 0.25 | 120.21 | 0.31 |
Working Volume Distance | Markers Velocity | Distance O-X | Distance O-Y |
---|---|---|---|
Close-range volume | Statics | 0.09% | 0.04% |
Low velocity | 0.11% | 0.15% | |
Higher velocity | 0.01% | 0.02% | |
More distant volume | Statics | 0.08% | 0.29% |
Low velocity | 0.05% | 0.10% | |
Higher velocity | 0.14% | 0.26% |
Videogrammetry | Vicon® | ||||
---|---|---|---|---|---|
Working Volume Distance | Markers Velocity | Distance O-X | Distance O-Y | Distance O-X | Distance O-Y |
Close-range volume | Statics | 0.59% | 0.41% | 0.49% | 0.37% |
Low velocity | 0.51% | 0.17% | 0.63% | 0.33% | |
Higher velocity | 0.55% | 0.01% | 0.56% | 0.02% | |
More distant volume | Statics | 0.82% | 0.38% | 0.75% | 0.09% |
Low velocity | 0.63% | 0.33% | 0.68% | 0.23% | |
Higher velocity | 0.55% | 0.21% | 0.70% | 0.05% |
Test | Distance O-X | Distance O-Y | ||
---|---|---|---|---|
Mean (SD) | Mean (SD) | |||
Limited illumination | 79.76 (0.13) | 0.11% | 120.79 (0.04) | 0.02% |
Variable illumination | 79.79 (0.07) | 0.06% | 120.85 (0.17) | 0.10% |
Cluttered scenario | 79.93 (0.09) | 0.08% | 120.55 (0.04) | 0.02% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña-Trabalon, A.; Moreno-Vegas, S.; Estebanez-Campos, M.B.; Nadal-Martinez, F.; Garcia-Vacas, F.; Prado-Novoa, M. A Low-Cost Validated Two-Camera 3D Videogrammetry System Applicable to Kinematic Analysis of Human Motion. Sensors 2025, 25, 4900. https://doi.org/10.3390/s25164900
Peña-Trabalon A, Moreno-Vegas S, Estebanez-Campos MB, Nadal-Martinez F, Garcia-Vacas F, Prado-Novoa M. A Low-Cost Validated Two-Camera 3D Videogrammetry System Applicable to Kinematic Analysis of Human Motion. Sensors. 2025; 25(16):4900. https://doi.org/10.3390/s25164900
Chicago/Turabian StylePeña-Trabalon, Alejandro, Salvador Moreno-Vegas, Maria Belen Estebanez-Campos, Fernando Nadal-Martinez, Francisco Garcia-Vacas, and Maria Prado-Novoa. 2025. "A Low-Cost Validated Two-Camera 3D Videogrammetry System Applicable to Kinematic Analysis of Human Motion" Sensors 25, no. 16: 4900. https://doi.org/10.3390/s25164900
APA StylePeña-Trabalon, A., Moreno-Vegas, S., Estebanez-Campos, M. B., Nadal-Martinez, F., Garcia-Vacas, F., & Prado-Novoa, M. (2025). A Low-Cost Validated Two-Camera 3D Videogrammetry System Applicable to Kinematic Analysis of Human Motion. Sensors, 25(16), 4900. https://doi.org/10.3390/s25164900