A Refractive Index Sensor Based on Spectral Interrogation of a Long Tapered Side-Hole Optical Fiber
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taha, B.A.; Ali, N.; Sapiee, N.M.; Fadhel, M.M.; Mat Yeh, R.M.; Bachok, N.N.; Al Mashhadany, Y.; Arsad, N. Comprehensive Review Tapered Optical Fiber Configurations for Sensing Application: Trend and Challenges. Biosensors 2021, 11, 253. [Google Scholar] [CrossRef]
- Sabri, N.; Aljunid, S.; Salim, M.; Fouad, S. Fiber Optic Sensors: Short Review and Applications. In Recent Trends in Physics of Material Science and Technology; Sharma, R., Srivastava, A.K., Eds.; Springer: Singapore, 2015; Volume 204, pp. 299–311. [Google Scholar] [CrossRef]
- Rovera, A.; Tancau, A.; Boetti, N.; Dalla Vedova, M.D.L.; Maggiore, P.; Janner, D. Fiber Optic Sensors for Harsh and High Radiation Environments in Aerospace Applications. Sensors 2023, 23, 2512. [Google Scholar] [CrossRef]
- De Acha, N.; Socorro-Leránoz, A.B.; Elosúa, C.; Matías, I.R. Trends in the Design of Intensity-Based Optical Fiber Biosensors (2010–2020). Biosensors 2021, 11, 197. [Google Scholar] [CrossRef] [PubMed]
- Al-Lami, S.S.; Atea, H.K.; Salman, A.M.; Al-Janabi, A. Adjustable Optical Fiber Displacement-Curvature Sensor Based on Macro-Bending Losses with a Coding of Optical Signal Intensity. Sens. Actuators A Phys. 2024, 373, 115403. [Google Scholar] [CrossRef]
- Cennamo, N.; Testa, G.; Marchetti, S.; De Maria, L.; Bernini, R.; Zeni, L.; Pesavento, M. Intensity-Based Plastic Optical Fiber Sensor with Molecularly Imprinted Polymer Sensitive Layer. Sens. Actuators B Chem. 2017, 241, 534–540. [Google Scholar] [CrossRef]
- Patiño-Jurado, B.; Gaviria-Calderón, A.; Botero-Cadavid, J.F.; Garcia-Sucerquia, J. Intensity-Modulated Refractive Index Sensor Based on Optical Fiber with Slanted End. Opt. Laser Technol. 2023, 157, 108700. [Google Scholar] [CrossRef]
- Chen, C.; Feng, W. Intensity-Modulated Carbon Monoxide Gas Sensor Based on Cerium Dioxide-Coated Thin-Core-Fiber Mach-Zehnder Interferometer. Opt. Laser Technol. 2022, 152, 108183. [Google Scholar] [CrossRef]
- Hu, X.; Hu, S.; Peng, Y. Applications of Fiber-Optic Biochemical Sensor in Microfluidic Chips: A Review. Biosens. Bioelectron. 2020, 166, 112447. [Google Scholar] [CrossRef]
- Lv, J.; Wang, J.; Yang, L.; Liu, W.; Fu, H.; Chu, P.K.; Liu, C. Recent Advances of Optical Fiber Biosensors Based on Surface Plasmon Resonance: Sensing Principles, Structures, and Prospects. Sens. Diagn. 2024, 3, 1369–1391. [Google Scholar] [CrossRef]
- Khan, M.R.R.; Kang, B.-H.; Lee, S.-W.; Kim, S.-H.; Yeom, S.-H.; Lee, S.-H.; Kang, S.-W. Fiber-Optic Multi-Sensor Array for Detection of Low Concentration Volatile Organic Compounds. Opt. Express 2013, 21, 20119–20130. [Google Scholar] [CrossRef]
- Niewczas, M.; Stasiewicz, K.; Przybysz, N.; Pakula, A.; Paczesny, J.; Zbonikowski, R.; Dziaduszek, J.; Kula, P.; Jaroszewicz, L. Technology and Research on the Influence of Liquid Crystal Cladding Doped with Magnetic Fe3O4 Nanoparticles on Light Propagation in an Optical Taper Sensor. Adv. Opt. Technol. 2024, 13, 1422695. [Google Scholar] [CrossRef]
- Korec-Kosturek, J.; Stasiewicz, K.; Jaroszewicz, L. SPR Sensor Based on a Tapered Optical Fiber with a Low Refractive Index Liquid Crystal Cladding and Bimetallic Ag–Au Layers. Sensors 2022, 22, 7192. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Guo, J.; Yang, F.; Yang, G.; Wu, Y.; Li, Z.; Liu, Y.; Yang, X.; Yao, J. Tapered Optical Fiber LRSPR Biosensor Based on Gold Nanoparticle Amplification for Label-Free BSA Detection. Sens. Actuators B Chem. 2025, 426, 136986. [Google Scholar] [CrossRef]
- Villatoro, J.; Monzon-Hernandez, D.; Mejía, E. Fabrication and Modeling of Uniform-Waist Single-Mode Tapered Optical Fiber Sensors. Appl. Opt. 2003, 42, 2278–2283. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Hench, L. Effect of Taper Geometries and Launch Angle on Evanescent Wave Penetration Depth in Optical Fibers. Biosens. Bioelectron. 2005, 20, 1312–1319. [Google Scholar] [CrossRef]
- Kumar, S.; Wang, Y.; Li, M.Y.; Wang, Q.L.; Malathi, S.; Marques, C.; Singh, R.; Zhang, B.Y. Plasmon-Based Tapered-in-Tapered Fiber Structure for p-Cresol Detection: From Human Healthcare to Aquaculture Application. IEEE Sens. J. 2022, 22, 18493–18500. [Google Scholar] [CrossRef]
- Li, Y.; Mehdi, I.; Mehdi, M.; Hussain, S.; Guo, J.; Shi, J.; Ali, S.; Mehdi, R.; Zhu, S.; Ghaffar, A.; et al. Twisted Tapered Plastic Optical Fiber Sensor: An Alternative Approach for Multi-Variant Alcohol Detection. Opt. Commun. 2025, 577, 131386. [Google Scholar] [CrossRef]
- Hamid, R.; Kamil, Y.M.; Aris, A.Z.; Abu Bakar, M.H.; Suhailin, F.H.; Alresheedi, M.T.; Ng, E.K.; Mahdi, M.A. Detection of 17-α-Ethinylestradiol with Bio-Functionalized Tapered Optical Fiber Sensor. Measurement 2024, 238, 115305. [Google Scholar] [CrossRef]
- Aziz, M.S.; Shamsudin, M.S.; Fahri, M.A.S.A.; Syuhada, A.; Raja Ibrahim, R.K.; Bakhtiar, H.; Harun, S.W. Glucose Oxidase-Based Enzyme Immobilised on Tapered Optical Fibre for Reliability Improvement in Selective Glucose Sensing. Optik 2022, 259, 168970. [Google Scholar] [CrossRef]
- Liyanage, T.; Lai, M.; Slaughter, G. Label-Free Tapered Optical Fiber Plasmonic Biosensor. Anal. Chim. Acta 2021, 1169, 338629. [Google Scholar] [CrossRef]
- Qiang, Z.; Junyang, L.; Yanling, Y.; Libo, G.; Chenyang, X. Micro Double Tapered Optical Fiber Sensors Based on the Evanescent Field-Effect and Surface Modification. Optik 2014, 125, 4614–4617. [Google Scholar] [CrossRef]
- Stasiewicz, K.A.; Jakubowska, I.; Dudek, M. Detection of Organosulfur and Organophosphorus Compounds Using a Hexafluorobutyl Acrylate-Coated Tapered Optical Fibers. Polymers 2022, 14, 612. [Google Scholar] [CrossRef]
- Stasiewicz, K.A.; Jakubowska, I.; Moś, J.; Kosturek, R.; Kowiorski, K. In-Line Gas Sensor Based on the Optical Fiber Taper Technology with a Graphene Oxide Layer. Electronics 2023, 12, 830. [Google Scholar] [CrossRef]
- Krawczyk, J.; Korec-Kosturek, J.; Kosturek, R.; Jakubowska, I.; Pakuła, A.; Djas, M.; Kowiorski, K.; Stasiewicz, K.A. Use of Graphene Oxide as an Active Layer on a Tapered Fibre for Detection of Volatile Liquid Vapours: Ammonium Hydroxide, Trimethyl Phosphate, and 1,4-Thioxane. Opto-Electron. Rev. 2025, 33, e154305. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Y. A Mach-Zehnder Interferometer Based on Tapered Dual Side Hole Fiber for Refractive Index Sensing. Opt. Fiber Technol. 2018, 45, 267–270. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, H.; Zhou, A. A Pre-Twisted Taper in Dual-Side Hole Fiber for Torsion Measurement with High Sensitivity. IEEE Sens. J. 2020, 20, 7761–7765. [Google Scholar] [CrossRef]
- Wang, X.; Ling, Q.; Luo, S.; Tao, J.; Cai, M.; Yu, Z.; Chen, D. Optimized Design of an Ultrasensitive Tapered Dual-Hole Fiber Gas Pressure Sensor Operating near the Dispersion Turning Point. J. Opt. Soc. Am. B 2022, 39, 2415–2420. [Google Scholar] [CrossRef]
- Zhao, F.; Lin, W.; Hu, J.; Liu, S.; Yu, F.; Chen, X.; Wang, G.; Shum, P.P.; Shao, L. Salinity and Temperature Dual-Parameter Sensor Based on Fiber Ring Laser with Tapered Side-Hole Fiber Embedded in Sagnac Interferometer. Sensors 2022, 22, 8533. [Google Scholar] [CrossRef]
- Dudek, M.; Köllő, K.K. Numerical Simulations of a Simple Refractive Index Sensor Based on Side-Hole Optical Fibres. Opto-Electron. Rev. 2022, 30, e143607. [Google Scholar] [CrossRef]
- Kosturek, R.; Dudek, M.; Jaroszewicz, L.R.; Zdanowicz, M.; Osuch, T. Refractive Index Sensor Based on the Micromachined Side-Hole Optical Fibre. Opto-Electron. Rev. 2025, 33, e153811. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, Z.; Chen, M.; Lang, T. Bovine Serum Albumin Detection Using Side-Hole Fiber Sensors. Opt. Fiber Technol. 2021, 65, 102596. [Google Scholar] [CrossRef]
- Fu, J.; Xu, Y.; Xu, M.; Lashari, G.; Zhou, A. Highly Sensitive Humidity Sensor Based on Tapered Dual Side-Hole Fiber. Optik 2022, 261, 169183. [Google Scholar] [CrossRef]
- Korec, J.; Stasiewicz, K.A.; Strzeżysz, O.; Kula, P.; Jaroszewicz, L.R. Electro-Steering Tapered Fiber-Optic Device with Liquid Crystal Cladding. J. Sens. 2019, 1617685. [Google Scholar] [CrossRef]
- Korec, J.; Stasiewicz, K.A.; Jaroszewicz, L.R.; Piecek, W.; Kula, P. Temperature and Voltage Sensing Based on a Tapered Optical Fiber Device with the Liquid Crystal Cladding. Opt. Fiber Technol. 2020, 56, 102190. [Google Scholar] [CrossRef]
- Dudek, M.; Kujawińska, M.; Parat, V.; Baethge, G.; Michalska, A.; Dahmani, B.; Ottevaere, H. Tomographic and Numerical Studies of Polymer Bridges between Two Optical Fibers for Telecommunication Applications. Opt. Eng. 2014, 53, 016113. [Google Scholar] [CrossRef]
- Pura-Pawlikowska, P.; Dudek, M.; Wonko, R.; Marć, P.; Kujawińska, M.; Jaroszewicz, L.R. The Polymer Converter for Effectively Connecting Polymer with Silica Optical Fibers. Opto-Electron. Rev. 2016, 24, 126–133. [Google Scholar] [CrossRef]
- Dudek, M.; Kujawińska, M. Polymer Optical Bridges for Efficient Splicing of Optical Fibers. Opt. Eng. 2019, 58, 026111. [Google Scholar] [CrossRef]
- Erdogan, T. Cladding-Mode Resonances in Short- and Long-Period Fiber Grating Filters. J. Opt. Soc. Am. A 1997, 14, 1760–1773. [Google Scholar] [CrossRef]
- Borjikhani, P.; Granpayeh, N.; Zibaii, M.I. High Sensitivity Tapered Fiber Refractive Index Biosensor Using Hollow Gold Nanoparticles. Sci. Rep. 2025, 15, 1458. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, F.; Li, J. Sensitivity-Enhanced Photonic Crystal Fiber Refractive Index Sensor with Two Waist-Broadened Tapers. J. Light. Technol. 2016, 34, 1373–1379. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.J.; Park, J.H.; Jeong, D.H.; Lee, S.K. Effects of Surface Density and Size of Gold Nanoparticles in a Fiber-Optic Localized Surface Plasmon Resonance Sensor and Its Application to Peptide Detection. Meas. Sci. Technol. 2010, 21, 085805. [Google Scholar] [CrossRef]
Structure | RI Range | Sensitivity [nm/RIU] | Ref. |
---|---|---|---|
Tapered DSHF | 1.333–1.379 | ~861.1 | [26] |
Tapered SMF | 1.333–1.403 | ~489.8 | [40] |
Double-tapered photonic crystal fiber | 1.333–1.373 | ~281.6 | [41] |
Optical fiber with removed cladding | 1.36–1.43 | ~471 | [42] |
Long-tapered S-H OF | 1.315–1.41 | ~622 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosturek, R.A.; Dudek, M.; Jaroszewicz, L.R. A Refractive Index Sensor Based on Spectral Interrogation of a Long Tapered Side-Hole Optical Fiber. Sensors 2025, 25, 4916. https://doi.org/10.3390/s25164916
Kosturek RA, Dudek M, Jaroszewicz LR. A Refractive Index Sensor Based on Spectral Interrogation of a Long Tapered Side-Hole Optical Fiber. Sensors. 2025; 25(16):4916. https://doi.org/10.3390/s25164916
Chicago/Turabian StyleKosturek, Rafał A., Michał Dudek, and Leszek R. Jaroszewicz. 2025. "A Refractive Index Sensor Based on Spectral Interrogation of a Long Tapered Side-Hole Optical Fiber" Sensors 25, no. 16: 4916. https://doi.org/10.3390/s25164916
APA StyleKosturek, R. A., Dudek, M., & Jaroszewicz, L. R. (2025). A Refractive Index Sensor Based on Spectral Interrogation of a Long Tapered Side-Hole Optical Fiber. Sensors, 25(16), 4916. https://doi.org/10.3390/s25164916