A Review of Orchard Canopy Perception Technologies for Variable-Rate Spraying
Abstract
1. Introduction
2. Key Sensors for Canopy Perception
2.1. LiDAR (Light Detection and Ranging)
2.2. Vision Sensors
2.2.1. Monocular and Stereo (Multi-View) Vision Systems
2.2.2. RGB-D Vision Sensors
2.3. Multispectral and Hyperspectral Sensors
3. Canopy Perception Technologies
3.1. LiDAR-Based Canopy Perception
3.2. Visual and Multispectral-Based Canopy Perception
3.3. Canopy Perception Based on Multi-Source Data Fusion
4. Application of Canopy Perception Technologies in Variable-Rate Spraying Systems
4.1. Spray Zone Partitioning and Nozzle Control Strategies
4.2. Boom Attitude Adjustment and Dynamic Response Mechanisms
4.3. Real-Time Feedback and Closed-Loop Coordinated Control
5. Current Challenges and Future Directions
5.1. Key Challenges
5.2. Integration of Multiscale Modeling and Intelligent Control
5.3. Strategies for Developing Practical and Scalable Sensing Systems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, J.; Cai, J.; Ouyang, J.; Xiao, L.; Qiu, B. The Influence of Electrostatic Spraying with Waist-Shaped Charging Devices on the Distribution of Long-Range Air-Assisted Spray in Greenhouses. Agronomy 2024, 14, 2278. [Google Scholar] [CrossRef]
- Zheng, K.; Zhao, X.; Han, C.; He, Y.; Zhai, C.; Zhao, C. Design and Experiment of an Automatic Row-Oriented Spraying System Based on Machine Vision for Early-Stage Maize Corps. Agriculture 2023, 13, 691. [Google Scholar] [CrossRef]
- Zhu, C.; Hao, S.; Liu, C.; Wang, Y.; Jia, X.; Xu, J.; Guo, S.; Huo, J.; Wang, W. An Efficient Computer Vision-Based Dual-Face Target Precision Variable Spraying Robotic System for Foliar Fertilisers. Agronomy 2024, 14, 2770. [Google Scholar] [CrossRef]
- Liu, J.; Abbas, I.; Noor, R.S. Development of Deep Learning-Based Variable Rate Agrochemical Spraying System for Targeted Weeds Control in Strawberry Crop. Agronomy 2021, 11, 1480. [Google Scholar] [CrossRef]
- Ma, J.; Liu, K.; Dong, X.; Huang, X.; Ahmad, F.; Qiu, B. Force and motion behaviour of crop leaves during spraying. Biosyst. Eng. 2023, 235, 83–99. [Google Scholar] [CrossRef]
- Shen, Y.; Zhu, H.; Liu, H.; Chen, Y.; Ozkan, E. Development of a laser-guided, embedded-computer-controlled, air-assisted precision sprayer. Trans. ASABE 2017, 60, 1827–1838. [Google Scholar] [CrossRef]
- Yan, T.; Zhu, H.; Sun, L.; Wang, X.; Ling, P. Investigation of an experimental laser sensor-guided spray control system for greenhouse variable-rate applications. Trans. ASABE 2019, 62, 899–911. [Google Scholar] [CrossRef]
- Underwood, J.P.; Hung, C.; Whelan, B.; Sukkarieh, S. Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors. Comput. Electron. Agric. 2016, 130, 83–96. [Google Scholar] [CrossRef]
- Wang, A.; Li, W.; Men, X.; Gao, B.; Xu, Y.; Wei, X. Vegetation detection based on spectral information and development of a low-cost vegetation sensor for selective spraying. Pest Manag. Sci. 2022, 78, 2467–2476. [Google Scholar] [CrossRef]
- Zhu, W.; Feng, Z.; Dai, S.; Zhang, P.; Wei, X. Using UAV Multispectral Remote Sensing with Appropriate Spatial Resolution and Machine Learning to Monitor Wheat Scab. Agriculture 2022, 12, 1785. [Google Scholar] [CrossRef]
- Zhu, W.; Li, J.; Li, L.; Wang, A.; Wei, X.; Mao, H. Nondestructive diagnostics of soluble sugar, total nitrogen and their ratio of tomato leaves in greenhouse by polarized spectra–hyperspectral data fusion. Int. J. Agric. Biol. Eng. 2020, 13, 189–197. [Google Scholar] [CrossRef]
- Gu, W.; Wen, W.; Wu, S.; Zheng, C.; Lu, X.; Chang, W.; Xiao, P.; Guo, X. 3D Reconstruction of Wheat Plants by Integrating Point Cloud Data and Virtual Design Optimization. Agriculture 2024, 14, 391. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, X.; Bai, T.; Wang, H.; Takata, D.; Guo, W. A UAV-based single-lens stereoscopic photography method for phenotyping the architecture traits of orchard trees. Remote Sens. 2024, 16, 1570. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, G.; Jiang, Y.; Xu, B.; Li, X.; Zhu, Y.; Yang, H. Apple tree branch information extraction from terrestrial laser scanning and backpack-LiDAR. Remote Sens. 2020, 12, 3592. [Google Scholar] [CrossRef]
- Lowe, T.; Moghadam, P.; Edwards, E.; Williams, J. Canopy density estimation in perennial horticulture crops using 3D spinning lidar SLAM. J. Field Robot. 2021, 38, 598–618. [Google Scholar] [CrossRef]
- Scalisi, A.; McClymont, L.; Peavey, M.; Morton, P.; Scheding, S.; Underwood, J.; Goodwin, I. Detecting, mapping and digitising canopy geometry, fruit number and peel colour in pear trees with different architecture. Sci. Hortic. 2024, 326, 112737. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, H.; Qi, J.; Sun, Z.; Han, S.; Feng, H.; Zhao, C. Estimating canopy-scale chlorophyll content in apple orchards using a 3D radiative transfer model and UAV multispectral imagery. Comput. Electron. Agric. 2022, 202, 107401. [Google Scholar] [CrossRef]
- Huang, Y.; Li, D.; Liu, X.; Ren, Z. Monitoring canopy SPAD based on UAV and multispectral imaging over fruit tree growth stages and species. Front. Plant Sci. 2024, 15, 1435613. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhao, Z.; Zhao, F.; Liu, J.; Li, Z.; Wang, X.; Gao, Y. An estimation of the leaf nitrogen content of apple tree canopies based on multispectral unmanned aerial vehicle imagery and machine learning methods. Agronomy 2024, 14, 552. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, B.; Zhang, H.; Yang, W.; Hu, X.; Cai, J.; Wang, X. Multi-Source Feature Fusion Network for LAI Estimation from UAV Multispectral Imagery. Agronomy 2025, 15, 988. [Google Scholar] [CrossRef]
- Chang, A.; Yeom, J.; Jung, J.; Landivar, J. Comparison of canopy shape and vegetation indices of citrus trees derived from UAV multispectral images for characterization of citrus greening disease. Remote Sens. 2020, 12, 4122. [Google Scholar] [CrossRef]
- Ji, W.; Pan, Y.; Xu, B.; Wang, J. A real-time apple targets detection method for picking robot based on ShufflenetV2-YOLOX. Agriculture 2022, 12, 856. [Google Scholar] [CrossRef]
- Kang, H.; Chen, C. Fruit detection, segmentation and 3D visualisation of environments in apple orchards. Comput. Electron. Agric. 2020, 171, 105302. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Z.; Ali, S.; Yang, N.; Fu, S.; Zhang, Y. Multi-class detection of cherry tomatoes using improved Yolov4-tiny model. Int. J. Agric. Biol. Eng. 2023, 16, 225–231. [Google Scholar]
- Pei, H.; Sun, Y.; Huang, H.; Zhang, W.; Sheng, J.; Zhang, Z. Weed Detection in Maize Fields by UAV Images Based on Crop Row Preprocessing and Improved YOLOv4. Agriculture 2022, 12, 975. [Google Scholar] [CrossRef]
- Deng, L.; Miao, Z.; Zhao, X.; Yang, S.; Gao, Y.; Zhai, C.; Zhao, C. HAD-YOLO: An Accurate and Effective Weed Detection Model Based on Improved YOLOV5 Network. Agronomy 2025, 15, 57. [Google Scholar] [CrossRef]
- Kang, H.; Chen, C. Fruit detection and segmentation for apple harvesting using visual sensor in orchards. Sensors 2019, 19, 4599. [Google Scholar] [CrossRef]
- Liu, M.; Jia, W.; Wang, Z.; Niu, Y.; Yang, X.; Ruan, C. An accurate detection and segmentation model of obscured green fruits. Comput. Electron. Agric. 2022, 197, 106984. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Shen, C.; Liu, H.; Huang, J.; Tian, K.; Tang, Z. Review of the field environmental sensing methods based on multi-sensor information fusion technology. Int. J. Agric. Biol. Eng. 2024, 17, 1–13. [Google Scholar] [CrossRef]
- Ren, Y.; Huang, X.; Aheto, J.H.; Wang, C.; Ernest, B.; Tian, X.; Wang, C. Application of volatile and spectral profiling together with multimode data fusion strategy for the discrimination of preserved eggs. Food Chem. 2021, 343, 128515. [Google Scholar] [CrossRef]
- Li, L.; Xie, S.; Ning, J.; Chen, Q.; Zhang, Z. Evaluating green tea quality based on multisensor data fusion combining hyperspectral imaging and olfactory visualization systems. J. Sci. Food Agric. 2019, 99, 1787–1794. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Tian, Y.; Wu, X.; Dai, C.; Li, B. Spectral classification of lettuce cadmium stress based on information fusion and VISSA-GOA-SVM algorithm. J. Food Process Eng. 2019, 42, e13085. [Google Scholar] [CrossRef]
- Duan, Y.; Han, W.; Guo, P.; Wei, X. YOLOv8-GDCI: Research on the Phytophthora Blight Detection Method of Different Parts of Chili Based on Improved YOLOv8 Model. Agronomy 2024, 14, 2734. [Google Scholar] [CrossRef]
- Jia, W.; Wei, J.; Zhang, Q.; Pan, N.; Niu, Y.; Yin, X.; Ge, X. Accurate segmentation of green fruit based on optimized mask RCNN application in complex orchard. Front. Plant Sci. 2022, 13, 955256. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Gao, X.; Xu, B.; Pan, Y.; Zhang, Z.; Zhao, D. Apple target recognition method in complex environment based on improved YOLOv4. J. Food Process Eng. 2021, 44, e13866. [Google Scholar] [CrossRef]
- Gu, C.; Sun, J.; Li, S.; Yang, S.; Zou, W.; Zhai, C. Deposition Characteristics of Air-Assisted Sprayer Based on Canopy Volume and Leaf Area of Orchard Trees. Plants 2025, 14, 220. [Google Scholar] [CrossRef]
- Petrović, I.; Sečnik, M.; Hočevar, M.; Berk, P. Vine canopy reconstruction and assessment with terrestrial lidar and aerial imaging. Remote Sens. 2022, 14, 5894. [Google Scholar] [CrossRef]
- Jiang, S.; Qi, P.; Han, L.; Liu, L.; Li, Y.; Huang, Z.; He, X. Navigation system for orchard spraying robot based on 3D LiDAR SLAM with NDT_ICP point cloud registration. Comput. Electron. Agric. 2024, 220, 108870. [Google Scholar] [CrossRef]
- Tsoulias, N.; Paraforos, D.S.; Xanthopoulos, G.; Zude-Sasse, M. Apple shape detection based on geometric and radiometric features using a LiDAR laser scanner. Remote Sens. 2020, 12, 2481. [Google Scholar] [CrossRef]
- Pforte, F.; Selbeck, J.; Hensel, O. Comparison of two different measurement techniques for automated determination of plum tree canopy cover. Biosyst. Eng. 2012, 113, 325–333. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, J.; Ge, L.; Yu, X.; Wang, Y.; Zhang, C. Research on volume prediction of single tree canopy based on three-dimensional (3D) LiDAR and clustering segmentation. Int. J. Remote Sens. 2021, 42, 738–755. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, Y.; Zhang, Q.; Xu, L.; Wang, L.; Zhang, P. Estimation of Crop Height Distribution for Mature Rice Based on a Moving Surface and 3D Point Cloud Elevation. Agronomy 2022, 12, 836. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, H. Evaluation of a laser scanning sensor in detection of complex-shaped targets for variable-rate sprayer development. Trans. ASABE 2016, 59, 1181–1192. [Google Scholar]
- Ahmed, S.; Qiu, B.; Ahmad, F.; Kong, C.W.; Xin, H. A state-of-the-art analysis of obstacle avoidance methods from the perspective of an agricultural sprayer UAV’s operation scenario. Agronomy 2021, 11, 1069. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, M.; Pan, Q.; Jin, X.; Wang, G.; Zhao, Y.; Hu, Y. Identification of tea plant cultivars based on canopy images using deep learning methods. Sci. Hortic. 2025, 339, 113908. [Google Scholar] [CrossRef]
- Zhang, X.; Karkee, M.; Zhang, Q.; Whiting, M.D. Computer vision-based tree trunk and branch identification and shaking points detection in Dense-Foliage canopy for automated harvesting of apples. J. Field Robot. 2021, 38, 476–493. [Google Scholar] [CrossRef]
- Neupane, C.; Pereira, M.; Koirala, A.; Walsh, K.B. Fruit sizing in orchard: A review from caliper to machine vision with deep learning. Sensors 2023, 23, 3868. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Gu, R. Research status and prospects on plant canopy structure measurement using visual sensors based on three-dimensional reconstruction. Agriculture 2020, 10, 462. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, H.; Wang, H.; Zhang, Y. Fruit detection and positioning technology for a Camellia oleifera C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision. Expert Syst. Appl. 2023, 211, 118573. [Google Scholar] [CrossRef]
- Si, Y.; Liu, G.; Feng, J. Location of apples in trees using stereoscopic vision. Comput. Electron. Agric. 2015, 112, 68–74. [Google Scholar] [CrossRef]
- Liu, T.H.; Nie, X.N.; Wu, J.M.; Zhang, D.; Liu, W.; Cheng, Y.F.; Qi, L. Pineapple (Ananas comosus) fruit detection and localization in natural environment based on binocular stereo vision and improved YOLOv3 model. Precis. Agric. 2023, 24, 139–160. [Google Scholar] [CrossRef]
- Shalev, O.; Degani, A. Canopy-based monte carlo localization in orchards using top-view imagery. IEEE Robot. Autom. Lett. 2020, 5, 2403–2410. [Google Scholar] [CrossRef]
- Malekabadi, A.J.; Khojastehpour, M.; Emadi, B. Disparity map computation of tree using stereo vision system and effects of canopy shapes and foliage density. Comput. Electron. Agric. 2019, 156, 627–644. [Google Scholar] [CrossRef]
- Tang, S.; Xia, Z.; Gu, J.; Wang, W.; Huang, Z.; Zhang, W. High-precision apple recognition and localization method based on RGB-D and improved SOLOv2 instance segmentation. Front. Sustain. Food Syst. 2024, 8, 1403872. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, L.; Zhou, X.; Yao, K.; Tian, Y.; Nirere, A. A method of information fusion for identification of rice seed varieties based on hyperspectral imaging technology. J. Food Process Eng. 2021, 44, e13797. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Z.; Zhang, Y.; Zhou, J.; Wu, J.; Li, P. Real-Time Detection and Location of Potted Flowers Based on a ZED Camera and a YOLO V4-Tiny Deep Learning Algorithm. Horticulturae 2022, 8, 21. [Google Scholar] [CrossRef]
- Jin, T.; Kang, S.M.; Kim, N.R.; Kim, H.R.; Han, X. Comparative Analysis of CNN-Based Semantic Segmentation for Apple Tree Canopy Size Recognition in Automated Variable-Rate Spraying. Agriculture 2025, 15, 789. [Google Scholar] [CrossRef]
- Ahmed, D.; Sapkota, R.; Churuvija, M.; Karkee, M. Estimating optimal crop-load for individual branches in apple tree canopies using YOLOv8. Comput. Electron. Agric. 2025, 229, 109697. [Google Scholar] [CrossRef]
- Kok, E.; Wang, X.; Chen, C. Obscured tree branches segmentation and 3D reconstruction using deep learning and geometrical constraints. Comput. Electron. Agric. 2023, 210, 107884. [Google Scholar] [CrossRef]
- Moreno, H.; Bengochea-Guevara, J.; Ribeiro, A.; Andújar, D. 3D assessment of vine training systems derived from ground-based RGB-D imagery. Agriculture 2022, 12, 798. [Google Scholar] [CrossRef]
- Lavaquiol-Colell, B.; Escolà, A.; Sanz-Cortiella, R.; Arnó, J.; Gené-Mola, J.; Gregorio, E.; Llorens-Calveras, J. A methodology for the realistic assessment of 3D point clouds of fruit trees in full 3D context. Comput. Electron. Agric. 2025, 232, 110082. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Shi, L.; Dai, C. An effective method fusing electronic nose and fluorescence hyperspectral imaging for the detection of pork freshness. Food Biosci. 2024, 59, 103880. [Google Scholar] [CrossRef]
- Ampatzidis, Y.; Partel, V. UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence. Remote Sens. 2019, 11, 410. [Google Scholar] [CrossRef]
- Stagakis, S.; González-Dugo, V.; Cid, P.; Guillén-Climent, M.L.; Zarco-Tejada, P.J. Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices. ISPRS J. Photogramm. Remote Sens. 2012, 71, 47–61. [Google Scholar] [CrossRef]
- Zhang, Y.; Ta, N.; Guo, S.; Chen, Q.; Zhao, L.; Li, F.; Chang, Q. Combining spectral and textural information from UAV RGB images for leaf area index monitoring in kiwifruit orchard. Remote Sens. 2022, 14, 1063. [Google Scholar] [CrossRef]
- Rico, S.I.; Marchal, P.C.; Gila, D.M.; Garcia, J.G. Multiple instance regression for the estimation of leaf nutrient content in olive trees using multispectral data taken with UAVs. Biosyst. Eng. 2024, 242, 91–99. [Google Scholar] [CrossRef]
- Chen, C.; Cao, G.Q.; Li, Y.B.; Liu, D.; Ma, B.; Zhang, J.L.; Li, L.; Hu, J.P. Research on monitoring methods for the appropriate rice harvest period based on multispectral remote sensing. Discret. Dyn. Nat. Soc. 2022, 2022, 1519667. [Google Scholar] [CrossRef]
- Zhang, S.; Xue, X.; Chen, C.; Sun, Z.; Sun, T. Development of a low-cost quadrotor UAV based on ADRC for agricultural remote sensing. Int. J. Agric. Biol. Eng. 2019, 12, 82–87. [Google Scholar] [CrossRef]
- Meng, L.; Audenaert, K.; Van Labeke, M.C.; Höfte, M. Detection of Botrytis cinerea on strawberry leaves upon mycelial infection through imaging technique. Sci. Hortic. 2024, 330, 113071. [Google Scholar] [CrossRef]
- Porto, L.R.; Abdelghafour, F.; Oviedo, M.; Imai, N.N.; Tommaselli, A.M.G.; Bendoula, R. Use of ResNets for HLB Disease Detection on Orange Leaves Using Terrestrial Multispectral Images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 10, 331–337. [Google Scholar] [CrossRef]
- Johansen, K.; Duan, Q.; Tu, Y.H.; Searle, C.; Wu, D.; Phinn, S.; McCabe, M.F. Mapping the condition of macadamia tree crops using multi-spectral UAV and WorldView-3 imagery. ISPRS J. Photogramm. Remote Sens. 2020, 165, 28–40. [Google Scholar] [CrossRef]
- Wei, L.; Yang, H.; Niu, Y.; Zhang, Y.; Xu, L.; Chai, X. Wheat biomass, yield, and straw-grain ratio estimation from multi-temporal UAV-based RGB and multispectral images. Biosyst. Eng. 2023, 234, 187–205. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, A.; Zhang, H.; Zhu, Q.; Zhang, H.; Sun, W.; Niu, Y. Estimating Leaf Chlorophyll Content of Winter Wheat from UAV Multispectral Images Using Machine Learning Algorithms under Different Species, Growth Stages, and Nitrogen Stress Conditions. Agriculture 2024, 14, 1064. [Google Scholar] [CrossRef]
- Wang, A.; Song, Z.; Xie, Y.; Hu, J.; Zhang, L.; Zhu, Q. Detection of Rice Leaf SPAD and Blast Disease Using Integrated Aerial and Ground Multiscale Canopy Reflectance Spectroscopy. Agriculture 2024, 14, 1471. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Zahid, A.; He, L.; Choi, D.; Krawczyk, G.; Zhu, H.; Heinemann, P. Development of a LiDAR-guided section-based tree canopy density measurement system for precision spray applications. Comput. Electron. Agric. 2021, 182, 106053. [Google Scholar] [CrossRef]
- Gu, C.; Zhao, C.; Zou, W.; Yang, S.; Dou, H.; Zhai, C. Innovative Leaf Area Detection Models for Orchard Tree Thick Canopy Based on LiDAR Point Cloud Data. Agriculture 2022, 12, 1241. [Google Scholar] [CrossRef]
- Gu, C.; Zhai, C.; Wang, X.; Wang, S. CMPC: An Innovative Lidar-Based Method to Estimate Tree Canopy Meshing-Profile Volumes for Orchard Target-Oriented Spray. Sensors 2021, 21, 4252. [Google Scholar] [CrossRef] [PubMed]
- Berk, P.; Stajnko, D.; Belsak, A.; Hocevar, M. Digital evaluation of leaf area of an individual tree canopy in the apple orchard using the LIDAR measurement system. Comput. Electron. Agric. 2020, 169, 105158. [Google Scholar] [CrossRef]
- Zeng, L.; Feng, J.; He, L. Semantic segmentation of sparse 3D point cloud based on geometrical features for trellis-structured apple orchard. Biosyst. Eng. 2020, 196, 46–55. [Google Scholar] [CrossRef]
- Bu, X.; Liu, C.; Liu, H.; Yang, G.; Shen, Y.; Xu, J. DFSNet: A 3D Point Cloud Segmentation Network toward Trees Detection in an Orchard Scene. Sensors 2024, 24, 2244. [Google Scholar] [CrossRef]
- Qiu, T.; Wang, T.; Han, T.; Kuehn, K.; Cheng, L.; Meng, C.; Yu, J. AppleQSM: Geometry-Based 3D Characterization of Apple Tree Architecture in Orchards. Plant Phenomics 2024, 6, 0179. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, J.; Zhang, W.; Zhang, B. Mobile LiDAR Scanning System Combined with Canopy Morphology Extracting Methods for Tree Crown Parameters Evaluation in Orchards. Sensors 2021, 21, 339. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Zahid, A.; He, L.; Choi, D.; Krawczyk, G.; Zhu, H. LiDAR-sensed tree canopy correction in uneven terrain conditions using a sensor fusion approach for precision sprayers. Comput. Electron. Agric. 2021, 191, 106565. [Google Scholar] [CrossRef]
- Gené-Mola, J.; Gregorio, E.; Cheein, F.A.; Guevara, J.; Llorens, J.; Sanz-Cortiella, R.; Rosell-Polo, J.R. Fruit detection, yield prediction and canopy geometric characterization using LiDAR with forced air flow. Comput. Electron. Agric. 2020, 168, 105121. [Google Scholar] [CrossRef]
- Sun, X.; He, L.; Jiang, H.; Li, R.; Mao, W.; Zhang, D.; Fu, L. Morphological estimation of primary branch length of individual apple trees during the deciduous period in modern orchard based on PointNet++. Comput. Electron. Agric. 2024, 220, 108873. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, J.; Tunio, M.H.; Wang, L. Study on the identification of mildew disease of cuttings at the base of mulberry cuttings by aeroponics rapid propagation based on a BP neural network. Agronomy 2022, 13, 106. [Google Scholar] [CrossRef]
- Zuo, Z.; Gao, S.; Peng, H.; Xue, Y.; Han, L.; Ma, G.; Mao, H. Lightweight Detection of Broccoli Heads in Complex Field Environments Based on LBDC-YOLO. Agronomy 2024, 14, 2359. [Google Scholar] [CrossRef]
- Memon, M.S.; Chen, S.; Shen, B.; Liang, R.; Tang, Z.; Wang, S.; Memon, N. Automatic visual recognition, detection and classification of weeds in cotton fields based on machine vision. Crop Prot. 2025, 187, 106966. [Google Scholar] [CrossRef]
- Chen, S.; Memon, M.S.; Shen, B.; Guo, J.; Du, Z.; Tang, Z.; Memon, H. Identification of weeds in cotton fields at various growth stages using color feature techniques. Ital. J. Agron. 2024, 19, 100021. [Google Scholar] [CrossRef]
- You, J.; Li, D.; Wang, Z.; Chen, Q.; Ouyang, Q. Prediction and visualization of moisture content in Tencha drying processes by computer vision and deep learning. J. Sci. Food Agric. 2024, 104, 5486–5494. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, J.; Liu, W.; Yue, R.; Yao, M.; Shi, J.; Hu, J. Seedling-YOLO: High-Efficiency Target Detection Algorithm for Field Broccoli Seedling Transplanting Quality Based on YOLOv7-Tiny. Agronomy 2024, 14, 931. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, Y.; Fan, W.; Liu, J. An Improved YOLOv8 Model for Lotus Seedpod Instance Segmentation in the Lotus Pond Environment. Agronomy 2024, 14, 1325. [Google Scholar] [CrossRef]
- Tao, T.; Wei, X. STBNA-YOLOv5: An Improved YOLOv5 Network for Weed Detection in Rapeseed Field. Agriculture 2025, 15, 22. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Ma, G.; Du, X.; Shaheen, N.; Mao, H. Recognition of weeds at asparagus fields using multi-feature fusion and backpropagation neural network. Int. J. Agric. Biol. Eng. 2021, 14, 190–198. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Zhao, Y.; Pan, Q.; Jin, K.; Xu, G.; Hu, Y. Ts-yolo: An all-day and lightweight tea canopy shoots detection model. Agronomy 2023, 13, 1411. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Sun, J.; Yu, T.; Cai, Z.; Zhang, Z.; Mao, H. Low-cost lettuce height measurement based on depth vision and lightweight instance segmentation model. Agriculture 2024, 14, 1596. [Google Scholar] [CrossRef]
- Ji, W.; Zhang, T.; Xu, B.; He, G. Apple recognition and picking sequence planning for harvesting robot in a complex environment. J. Agric. Eng. 2024, 55. [Google Scholar] [CrossRef]
- Wei, P.; Yan, X.; Yan, W.; Sun, L.; Xu, J.; Yuan, H. Precise extraction of targeted apple tree canopy with YOLO-Fi model for advanced UAV spraying plans. Comput. Electron. Agric. 2024, 226, 109425. [Google Scholar] [CrossRef]
- Akdoğan, C.; Özer, T.; Oğuz, Y. PP-YOLO: Deep learning based detection model to detect apple and cherry trees in orchard based on Histogram and Wavelet preprocessing techniques. Comput. Electron. Agric. 2025, 232, 110052. [Google Scholar] [CrossRef]
- Sun, H.; Wang, B.; Xue, J. YOLO-P: An efficient method for pear fast detection in complex orchard picking environment. Front. Plant Sci. 2023, 13, 1089454. [Google Scholar] [CrossRef]
- Li, Z.; Deng, X.; Lan, Y.; Liu, C.; Qing, J. Fruit tree canopy segmentation from UAV orthophoto maps based on a lightweight improved U-Net. Comput. Electron. Agric. 2024, 217, 108538. [Google Scholar] [CrossRef]
- Xue, X.; Luo, Q.; Bu, M.; Li, Z.; Lyu, S.; Song, S. Citrus Tree Canopy Segmentation of Orchard Spraying Robot Based on RGB-D Image and the Improved DeepLabv3+. Agronomy 2023, 13, 2059. [Google Scholar] [CrossRef]
- Hu, T.; Wang, W.; Gu, J.; Xia, Z.; Zhang, J.; Wang, B. Research on Apple Object Detection and Localization Method Based on Improved YOLOX and RGB-D Images. Agronomy 2023, 13, 1816. [Google Scholar] [CrossRef]
- Xu, S.; Zheng, S.; Rai, R. Dense object detection based canopy characteristics encoding for precise spraying in peach orchards. Comput. Electron. Agric. 2025, 232, 110097. [Google Scholar] [CrossRef]
- Xiao, D.; Pan, Y.; Feng, J.; Yin, J.; Liu, Y.; He, L. Remote sensing detection algorithm for apple fire blight based on UAV multispectral image. Comput. Electron. Agric. 2022, 199, 107137. [Google Scholar] [CrossRef]
- Kriston-Vizi, J.; Umeda, M.; Miyamoto, K. Assessment of the water status of mandarin and peach canopies using visible multispectral imagery. Biosyst. Eng. 2008, 100, 338–345. [Google Scholar] [CrossRef]
- Chandel, A.K.; Khot, L.R.; Sallato, B. Apple powdery mildew infestation detection and mapping using high-resolution visible and multispectral aerial imaging technique. Sci. Hortic. 2021, 287, 110228. [Google Scholar] [CrossRef]
- Van Beek, J.; Tits, L.; Somers, B.; Coppin, P. Stem Water Potential Monitoring in Pear Orchards through WorldView-2 Multispectral Imagery. Remote Sens. 2013, 5, 6647–6666. [Google Scholar] [CrossRef]
- Sun, G.; Chen, S.; Hu, T.; Zhang, S.; Li, H.; Li, A.; Liu, J. Identifying optimal ground feature classification and assessing leaf nitrogen status based on UAV multispectral images in an apple orchard. Plant Soil 2025, 511, 733–752. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, Y.; Song, Z.; Jiang, D.; Guo, Y.; Liu, Y.; Chang, Q. Estimating Leaf Area Index in Apple Orchard by UAV Multispectral Images with Spectral and Texture Information. Remote Sens. 2024, 16, 3237. [Google Scholar] [CrossRef]
- Tu, Y.-H.; Johansen, K.; Phinn, S.; Robson, A. Measuring Canopy Structure and Condition Using Multi-Spectral UAS Imagery in a Horticultural Environment. Remote Sens. 2019, 11, 269. [Google Scholar] [CrossRef]
- Adade, S.Y.S.S.; Lin, H.; Johnson, N.A.N.; Nunekpeku, X.; Aheto, J.H.; Ekumah, J.N.; Chen, Q. Advanced Food Contaminant Detection through Multi-Source Data Fusion: Strategies, Applications, and Future Perspectives. Trends Food Sci. Technol. 2024, 156, 104851. [Google Scholar] [CrossRef]
- Xu, S.; Xu, X.; Zhu, Q.; Meng, Y.; Yang, G.; Feng, H.; Wang, B. Monitoring leaf nitrogen content in rice based on information fusion of multi-sensor imagery from UAV. Precis. Agric. 2023, 24, 2327–2349. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Gu, C.; Li, Z.; Huang, J.; Lv, X.; Qiu, W. A variable-rate spraying method fusing canopy volume and disease detection to reduce pesticide dosage. Comput. Electron. Agric. 2025, 237, 110606. [Google Scholar] [CrossRef]
- Li, H.; Tan, B.; Sun, L.; Liu, H.; Zhang, H.; Liu, B. Multi-Source Image Fusion Based Regional Classification Method for Apple Diseases and Pests. Appl. Sci. 2024, 14, 7695. [Google Scholar] [CrossRef]
- Hu, C.; Ru, Y.; Fang, S.; Rong, Z.; Zhou, H.; Yan, X.; Liu, M. Orchard variable rate spraying method and experimental study based on multidimensional prescription maps. Comput. Electron. Agric. 2025, 235, 110379. [Google Scholar] [CrossRef]
- Liu, D.; Chen, L.; Tai, S.; Li, Y.; Xu, C. Model and experiment of target-specific variable spraying based on canopy volume perception. Crop Prot. 2025, 194, 107215. [Google Scholar] [CrossRef]
- Xue, X.; Luo, Q.; Ji, Y.; Ma, Z.; Zhu, J.; Li, Z.; Song, S. Design and test of Kinect-based variable spraying control system for orchards. Front. Plant Sci. 2023, 14, 1297879. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Ma, H.; Cui, Z.; Li, Z.; Wu, J.; Liao, J.; Liu, H.; Wang, Y.; Lan, Y. Field Study of UAV Variable-Rate Spraying Method for Orchards Based on Canopy Volume. Agriculture 2025, 15, 1374. [Google Scholar] [CrossRef]
- Jiang, S.; Li, W.; Ma, H.; Wang, K.; Du, Z.; Zheng, Y. Design of target-variable spraying system based on FAVD of fruit tree canopy. Front. Plant Sci. 2025, 16, 1582664. [Google Scholar] [CrossRef] [PubMed]
- Fessler, L.; Fulcher, A.; Lockwood, D.; Wright, W.; Zhu, H. Advancing sustainability in tree crop pest management: Refining spray application rate with a laser-guided variable-rate sprayer in apple orchards. HortScience 2020, 55, 1522–1530. [Google Scholar] [CrossRef]
- Salas, B.; Salcedo, R.; Garcia-Ruiz, F.; Gil, E. Design, implementation and validation of a sensor-based precise airblast sprayer to improve pesticide applications in orchards. Precis. Agric. 2024, 25, 865–888. [Google Scholar] [CrossRef]
- Liu, H.; Du, Z.; Shen, Y.; Du, W.; Zhang, X. Development and evaluation of an intelligent multivariable spraying robot for orchards and nurseries. Comput. Electron. Agric. 2024, 222, 109056. [Google Scholar] [CrossRef]
- Osterman, A.; Godeša, T.; Hočevar, M.; Širok, B.; Stopar, M. Real-time positioning algorithm for variable-geometry air-assisted orchard sprayer. Comput. Electron. Agric. 2013, 98, 175–182. [Google Scholar] [CrossRef]
- Nan, Y.; Zhang, H.; Zheng, J.; Yang, K.; Yang, W.; Zhang, M. Research on profiling tracking control optimization of orchard sprayer based on the phenotypic characteristics of tree crown. Comput. Electron. Agric. 2022, 192, 106455. [Google Scholar] [CrossRef]
- Khan, Z.; Liu, H.; Shen, Y.; Zeng, X. Deep learning improved YOLOv8 algorithm: Real-time precise instance segmentation of crown region orchard canopies in natural environment. Comput. Electron. Agric. 2024, 224, 109168. [Google Scholar] [CrossRef]
- Jiang, A.; Ahamed, T. Navigation of an Autonomous Spraying Robot for Orchard Operations Using LiDAR for Tree Trunk Detection. Sensors 2023, 23, 4808. [Google Scholar] [CrossRef]
- Luo, Y.; He, X.; Shi, H.; Yang, S.X.; Song, L.; Li, P. Design and Development of a Precision Spraying Control System for Orchards Based on Machine Vision Detection. Sensors 2025, 25, 3799. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; He, X.; Liu, W. Precision Variable-Rate Spraying Robot by Using Single 3D LIDAR in Orchards. Agronomy 2022, 12, 2509. [Google Scholar] [CrossRef]
- Zhang, J.; Yin, H.; Zhou, L.; Gu, C.; Qiu, W.; Lv, X.; Zhang, Z. Variable rate air-assisted spray based on real-time disease spot identification. Pest Manag. Sci. 2023, 79, 402–414. [Google Scholar] [CrossRef]
Sensor Model | Line Count | Range Capability | Accuracy | Frame Rate |
---|---|---|---|---|
Sick LMS111-10100 (SICK AG, Waldkirch, Germany) | 1 | 0.5~20 m | ±30 mm | 25 Hz/50 Hz |
RS-16 LiDAR (Robosense, Shenzhen, China) | 16 | 0.4~150 m | ±2 cm | 5 Hz/10 Hz/20 Hz |
Sick LMS511-20100 PRO (SICK AG, Waldkirch, Germany) | 1 | 0.2~80 m | ±12 mm | 25 Hz/35 Hz/50 Hz/75 Hz/100 Hz |
Helios 16 (Robosense, Shenzhen, China) | 16 | 0.2~150 m | ±1 cm | 5 Hz/10 Hz/20 Hz |
Sensor Model | Shutter Type | Interface | Frame Rate | Resolution | Pixel Size |
---|---|---|---|---|---|
SHL 1600 4K (SHL/ShunhuaLi, Shenzhen, China) | Global | C/CS | 60 fps | 9280 × 5220 | 1.3 × 1.3 µm |
MV CE200 10UM (Hikrobot, Hangzhou, China) | Rolling | USB 3.0 | 40 fps | 5472 × 3648 | 2.4 × 2.4 μm |
VLXN 490M.I.JP (Baumer Electric GmbH, Friedberg, Germany) | Global | 5 GigE | 18 fps | 7008 × 7000 | 3.2 × 3.2 µm |
VQXT 120C.HS (Baumer Electric GmbH, Friedberg, Germany) | Global | 10G Ethernet | 335 fps | 4096 × 3068 | 5.5 × 5.5 µm |
Sensor Model | Depth Technology | Frame Rate | RGB Resolution | Depth Resolution |
---|---|---|---|---|
Femto Bolt (Orbbec, Shenzhen, China) | iToF (indirect ToF) | 30 fps | 320 × 288 | 1920 × 1080 |
Kinect v2 (Microsoft Corporation, Redmond, WA, USA) | ToF | 30 fps | 1920 × 1080 | 512 × 424 |
Intel RealSense D435i (Intel Corporation, Santa Clara, CA, USA) | Binocular Infrared | 90 fps | 1920 × 1080 | 1280 × 720 |
Femto Megal (Orbbec, Shenzhen, China) | ToF | 30 fps | 1920 × 1080 | 640 × 576 |
Sensor Model | Spectral Bands (MultiSpectral + PAN) | Sensor Resolution (Per Band) | FOV (H × V) | Storage Method | Power Supply |
---|---|---|---|---|---|
FS-500 (Focused Photonics, Hangzhou, China) | 4× multispectral + 1× RGB | MS: 1.3 MP/RGB: 11.9 MP | MS: 69.1° × 56.4°/RGB: 59.1° × 45.0° | TF card | 12 V DC |
Red Edge-P (MicaSense, Seattle, WA, USA) | 5× multispectral + 1× PAN | MS: 1.6 MP/PAN: 5.1 MP | 50° HFOV × 38° VFOV | CF express | 7–15.6 V DC |
Altum-PT (MicaSense, Seattle, WA, USA) | 5× multispectral + 1× PAN + thermal | MS: 3.2 MP/PAN: 12 MP | 48° HFOV × 39° VFOV | CF express | 7.0–25.2 V DC |
AQ600 (Changguang Yuchen, Changchun, China) | 5× multispectral (CMOS) + 1× RGB | MS: 3.2 MP/RGB: 12.3 MP | MS: 48.0° × 39.6°/RGB: 47.4° × 36.4° | Internal + SD/USB | 12 V DC |
Target Object | Detection Objective | Methodology | Ref. |
---|---|---|---|
Apple tree canopy | Leaf area estimation | 3D point cloud segmentation | [76] |
Pear tree canopy | Canopy volume/profile modeling | Grid-based contour extraction | [77] |
Apple tree canopy | Leaf area estimation | Point cloud density and canopy volume correlation using regression model | [78] |
Apple tree canopy | Canopy density estimation | Voxel-based occupancy analysis | [79] |
Optimization Method | Detection Objective | Methodology/Technical Focus | Ref. |
---|---|---|---|
IMU-assisted pose correction | Accurate canopy point cloud acquisition and volume estimation | Sensor fusion for pose compensation | [82] |
IMU-based slope evaluation | Canopy point correction and density estimation | Terrain-aware LiDAR data optimization | [83] |
IMU-assisted pose optimization | Extraction of precise canopy structural features | Multi-frame alignment using IMU–LiDAR fusion | [84] |
PointNet++-based segmentation | Measurement of canopy branch length | Deep learning-based 3D branch identification | [85] |
Researcher | Research Object | Research Method | Research Objective | Ref. |
---|---|---|---|---|
Akdoğan et al. | Cherry and apple canopy | PP-YOLO classification model | Canopy classification and precision spraying | [99] |
Sun et al. | Pear fruits | YOLO-P detection model | Accurate detection of pear fruits | [100] |
Li et al. | Lychee orchard canop | Improved lightweight U-Net (ResNet34 + CBAM + Focal Loss) | Instance segmentation of lychee canopy | [101] |
Xue et al. | Citrus canopy | RGB-D images with improved DeepLabv3+ segmentation | Citrus canopy segmentation | [102] |
Hu et al. | Apple fruits | RGB-D-based improved YOLOX detection model | Apple fruit detection and localization | [103] |
Xu et al. | Peach canopy | RGB-D-based canopy feature encoding | Density map prediction and precision spraying | [104] |
Researcher | Research Object | Research Method | Research Objective | Ref. |
---|---|---|---|---|
Kriston-Vizi et al. | Peach tree canopy | Multispectral evaluation | Canopy water stress analysis | [106] |
Chandel et al. | Apple tree canopy | Multispectral detection | Apple powdery mildew detection and mapping | [107] |
Van Beek et al. | Pear tree canopy | WorldView-2-based multispectral detection | Stem water potential estimation | [108] |
Sun et al. | Apple tree canopy | UAV-based multispectral detection | Evaluation of leaf nitrogen status | [109] |
Yu et al. | Apple tree canopy | UAV-based multispectral detection | Leaf area index (LAI) measurement | [110] |
Tu et al. | Pear tree canopy | Multispectral UAS detection | Canopy structural and physiological condition assessment | [111] |
Researcher | Research Object | Research Method | Research Objective | Ref. |
---|---|---|---|---|
Liu et al. | Orchard tree canopy | Canopy volume perception model | Adjust pesticide dosage based on Pulse-Width Modulation (PWM) | [117] |
Xue et al. | Citrus canopy | Canopy volume detection using Kinect senso | Adjust spray flow using PWM based on canopy volume | [118] |
Chen et al. | Citrus and litchi canopy | UAV LiDAR + IPTD filtering + region-growing segmentation | Generate prescription maps to guide volume-based spraying | [119] |
Jiang et al. | Orchard tree canopy | FAVD-based canopy density estimation | Construct FAVD–spray volume control model with PWM for variable-rate spraying | [120] |
Fessler et al. | Apple tree canopy | Laser scanning-based canopy volume and density acquisition | Canopy-driven control + nozzle PWM regulation + fuzzy PID controller for variable-rate pesticide adjustment | [121] |
Salas et al. | Orchard tree canopy | Semantic segmentation of canopy regions | Variable spraying based on image semantic segmentation + PWM-controlled variable nozzles + ternary boom design | [122] |
Researcher | Research Object | Research Method | Research Objective | Ref. |
---|---|---|---|---|
Jiang et al. | Fruit tree trunk | LiDAR-based navigation; DBSCAN, K-means, and RANSAC algorithms | Autonomous navigation of orchard spraying robot via LiDAR; optimized path planning and precise spraying | [127] |
Luo et al. | Kiwifruit canopy | Vision-based canopy detection; ESO fuzzy adaptive control algorithm | Tree canopy feature recognition using machine vision for optimized spray volume and precise control | [128] |
Liu et al. | Fruit tree canopy | Single 3D LiDAR sensing; RANSAC algorithm; ROI extraction | Perception of canopy structure to reduce pesticide usage and optimize spray path | [129] |
Zhang et al. | Pear tree canopy | Real-time disease spot detection using YOLOv5m CNN; PWM-based nozzle control | Develop a real-time variable-rate spray system based on disease spot level; reduce pesticide use while ensuring application quality | [130] |
Technology Type | Low-Cost Solutions | High-Cost Solutions | Key Factors Influencing Price Gap | Performance Advantages |
---|---|---|---|---|
Monocular Vision | $70–420 | $1120–4200 | Resolution (60 fps < 200 fps); low-light performance (20 dB < 50 dB) | Low cost, simple structure; suitable for image-based recognition and contour extraction |
Stereo Vision | $350–1120 | $2800–7000 | Depth estimation accuracy (5% > 1%); effective range (3 m < 20 m) | Enables markerless depth estimation; ideal for mid-range 3D reconstruction |
RGB-D Sensors | $252–840 | $2100–5600 | Point cloud density (50K points < 1M points) | Simultaneous acquisition of color and depth data; facilitates canopy modeling and object identification |
LiDAR | $210–1680 | $7000–42,000 | Angular resolution (1° > 0.1°); penetration rate (30% < 90%) | High point cloud accuracy and strong penetration; suitable for complex canopy perception |
Multispectral Sensors | $1120–4900 | $8400–35,000 | Number of spectral bands (5–12); accuracy (±8% to ±1%) | Capable of detecting plant diseases, pests, and nutrient status; supports intelligent variable-rate spraying and zonal analysis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Jia, W.; Ou, M.; Wang, X.; Dong, X. A Review of Orchard Canopy Perception Technologies for Variable-Rate Spraying. Sensors 2025, 25, 4898. https://doi.org/10.3390/s25164898
Wang Y, Jia W, Ou M, Wang X, Dong X. A Review of Orchard Canopy Perception Technologies for Variable-Rate Spraying. Sensors. 2025; 25(16):4898. https://doi.org/10.3390/s25164898
Chicago/Turabian StyleWang, Yunfei, Weidong Jia, Mingxiong Ou, Xuejun Wang, and Xiang Dong. 2025. "A Review of Orchard Canopy Perception Technologies for Variable-Rate Spraying" Sensors 25, no. 16: 4898. https://doi.org/10.3390/s25164898
APA StyleWang, Y., Jia, W., Ou, M., Wang, X., & Dong, X. (2025). A Review of Orchard Canopy Perception Technologies for Variable-Rate Spraying. Sensors, 25(16), 4898. https://doi.org/10.3390/s25164898