Three-Dimensional Environment Mapping with a Rotary-Driven Lidar in Real Time
Abstract
1. Introduction
- (1)
- A novel rotary-driven LiDAR system is developed, which utilizes a slip-ring mechanism for continuous rotation and thus generating uniform point clouds.
- (2)
- Multi-threaded feature registration and a two-stage closed-loop algorithm based on multi-sensor fusion are proposed.
- (3)
- The developed system and algorithms have been extensively tested using the public KITTI dataset and our custom-made mobile platform, meaning that the 3D reconstruction results are highly visually consistent. The system has higher robustness and accuracy.
2. Related Works
3. Methodology
3.1. Feature Extraction
3.2. Motion Distortion Compensation
3.2.1. Rotational Distortion Compensation
3.2.2. Translational Distortion Compensation
3.3. Multi-Sensor Contact Optimization
3.4. Two-Staged Loop-Closure Detection
4. Experiment
4.1. Dataset
4.1.1. Metric
4.1.2. Analysis of Experimental Results
4.2. Real-Time Demonstration on a Mobile Platform
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, Y.C.; Zheng, L.J.; Liu, Y.C. 3D environment measurement and reconstruction based on LiDAR. In Proceedings of the 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, 14–17 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, present, and future of simultaneous localization and mapping:Toward the robust-perception age. IEEE Trans. Robot. 2016, 32, 1309–1332. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, C.; Zhang, F. Targetless extrinsic calibration of multiple small fov lidars and cameras using adaptive voxelization. IEEE Trans. Instrum. Meas. 2022, 71, 8502612. [Google Scholar] [CrossRef]
- Raj, T.; Hanim Hashim, F.; Baseri Huddin, A.; Ibrahim, M.F.; Hussain, A. A survey on lidar scanning mechanisms. Electronics 2020, 9, 741. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, F. R3live: A robust, real-time, rgb-colored, lidar-inertial-visualtightly-coupled state estimation and mapping package. arXiv 2021, arXiv:2109.07982. [Google Scholar]
- Liu, J.; Zheng, J.; Jia, X.; Li, T.; Zhang, W. A tightly-coupled method of lidar-inertial based on complementary filtering. Meas. Sci. Technol. 2023, 34, 105119. [Google Scholar] [CrossRef]
- Kim, G.; Kim, A. Scan context: Egocentric spatial descriptor for place recognition within 3d point cloud map. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 4802–4809. [Google Scholar]
- Yuanpei, W.; Xiaohong, T. Visual slam loop closure detection based on improved orb. China Sci. 2018, 13, 1621. [Google Scholar]
- Zhang, G.; Yan, X.; Ye, Y. Loop closure detection via maximization of mutual information. IEEE Access 2019, 7, 124217–124232. [Google Scholar] [CrossRef]
- Harchowdhury, A.; Kleeman, L.; Vachhani, L. Coordinated nodding of a 2d lida for dense 3d range measurements. IEEE Robot. Autom. Lett. 2018, 3, 4108–4115. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Z.; Li, Z.; Cai, Y.; Sun, S.; Zhou, J. A single-shot pose estimation approach for a 2d laser rangefinder. Meas. Sci. Technol. 2019, 31, 025105. [Google Scholar] [CrossRef]
- Kaul, L.; Zlot, R.; Bosse, M. Continuous-time three-dimensional mapping for micro aerial vehicles with a passively actuated rotating laser scanner. J. Field Robot. 2016, 33, 103–132. [Google Scholar] [CrossRef]
- Bosse, M.; Zlot, R.; Flick, P. Zebedee: Design of a spring-mounted 3-d range sensor with application to mobile mapping. IEEE Trans. Robot. 2012, 28, 1104–1119. [Google Scholar] [CrossRef]
- Karimi, M.; Oelsch, M.; Stengel, O.; Babaians, E.; Steinbach, E. Lola-slam: Lowlatency lidar slam using continuous scan slicing. IEEE Robot. Autom. Lett. 2021, 6, 2248–2255. [Google Scholar] [CrossRef]
- Zhen, W.; Hu, Y.; Liu, J.; Scherer, S. A joint optimization approach of lidar-camera fusion for accurate dense 3-d reconstructions. IEEE Robot. Autom. Lett. 2019, 4, 3585–3592. [Google Scholar] [CrossRef]
- Yan, L.; Dai, J.; Zhao, Y.; Chen, C. Real-time 3d mapping in complex environments using a spinning actuated lidar system. Remote Sens. 2023, 15, 963. [Google Scholar] [CrossRef]
- Zhang, J.; Singh, S. Loam: Lidar odometry and mapping in real-time. Robot. Sci. Syst. 2014, 2, 1–9. [Google Scholar]
- Shan, T.; Englot, B. Lego-loam: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 4758–4765. [Google Scholar]
- Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. Lio-sam: Tightly coupled lidar inertial odometry via smoothing and mapping. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; IEEE: Piscataway, NJ, USA, 2020; pp. 5135–5142. [Google Scholar]
- Shan, T.; Englot, B.; Ratti, C.; Rus, D. Lvi-sam: Tightly-coupled lidar-visual-inertial odometry via smoothing and mapping. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 5692–5698. [Google Scholar]
- Deng, J.; Wu, Q.; Chen, X.; Xia, S.; Sun, Z.; Liu, G.; Yu, W.; Pei, L. Nerf-loam: Neural implicit representation for large-scale incremental lidar odometry and mapping. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 8218–8227. [Google Scholar]
- Xing, Z.; Meng, Z.; Zheng, G.; Ma, G.; Yang, L.; Guo, X.; Tan, L.; Jiang, Y.; Wu, H. Intelligent rehabilitation in an aging population: Empowering human-machine interaction for hand function rehabilitation through 3D deep learning and point cloud. Front. Comput. Neurosci. 2025, 19, 1543643. [Google Scholar] [CrossRef] [PubMed]
Sequences | Parameters | |||
---|---|---|---|---|
Number of Frames | Length of Time (s) | Distance (m) | Maximum Speed (m s−1) | |
#00 | 4544 | 471 | 3682 | 12.9 |
#05 | 2762 | 288 | 2205 | 11.1 |
#07 | 1101 | 114 | 694 | 11.9 |
Seq | Algorithm | Max | Mean | Median | Min | Rmse | Std |
---|---|---|---|---|---|---|---|
00 | LOAM | 19.678842 | 6.903108 | 5.442810 | 0.534717 | 8.480904 | 4.926747 |
LeGO-LOAM | 11.521786 | 2.449518 | 2.854562 | 0.067515 | 3.425754 | 1.802647 | |
FAST-LIO2 | 12.142564 | 4.215111 | 3.167574 | 0.029817 | 4.518875 | 2.475974 | |
OUR | 10.530946 | 1.997565 | 2.076327 | 0.034538 | 2.476619 | 1.464027 | |
05 | LOAM | 10.798714 | 2.734301 | 2.231552 | 0.804164 | 3.225685 | 1.709812 |
LeGO-LOAM | 6.149594 | 1.788600 | 1.986429 | 0.009964 | 2.112814 | 1.124676 | |
FAST-LIO2 | 5.037337 | 2.646398 | 2.614963 | 0.440284 | 2.774483 | 0.833268 | |
OUR | 4.911035 | 1.160277 | 1.115179 | 0.001091 | 1.464198 | 0.893104 | |
07 | LOAM | 16.691376 | 2.894979 | 1.209624 | 0.059581 | 4.625819 | 3.607949 |
LeGO-LOAM | 4.190354 | 2.413983 | 2.490165 | 0.193651 | 2.637720 | 1.063133 | |
FAST-LIO2 | 5.03964 | 2.589459 | 2.295412 | 0.069451 | 3.745251 | 1.180617 | |
OUR | 4.231020 | 1.711174 | 1.647058 | 0.039654 | 2.061742 | 1.150071 |
Seq | Algorithm | Max | Mean | Median | Min | Rmse | Std |
---|---|---|---|---|---|---|---|
00 | LOAM | 7.572816 | 2.861219 | 3.293702 | 0.052028 | 3.371129 | 1.782677 |
LeGO-LOAM | 4.492446 | 1.024355 | 1.004043 | 0.004296 | 1.272371 | 0.754736 | |
FAST-LIO2 | 4.681298 | 1.892541 | 1.167574 | 0.009817 | 1.518875 | 0.475974 | |
OUR | 3.872154 | 0.896217 | 0.923651 | 0.003125 | 1.058247 | 0.682519 | |
05 | LOAM | 5.962009 | 2.606564 | 3.083750 | 0.012628 | 3.052875 | 1.589298 |
LeGO-LOAM | 3.267100 | 0.914836 | 1.012487 | 0.001205 | 1.110065 | 0.628745 | |
FAST-LIO2 | 2.192275 | 1.122483 | 1.195423 | 0.000652 | 1.198430 | 0.419840 | |
OUR | 1.326789 | 0.587324 | 0.596213 | 0.125741 | 0.652189 | 0.172365 | |
07 | LOAM | 6.893125 | 2.783081 | 3.128018 | 0.036888 | 3.337638 | 1.842359 |
LeGO-LOAM | 1.182524 | 0.658272 | 0.638349 | 0.149834 | 0.683565 | 0.184231 | |
FAST-LIO2 | 2.182669 | 0.901509 | 0.971551 | 0.001638 | 1.011673 | 0.459089 | |
OUR | 1.326789 | 0.587324 | 0.596213 | 0.125741 | 0.652189 | 0.172365 |
Model | Model Height | Model Width | Measured Height | Measured Width | Height Error | Width Error |
---|---|---|---|---|---|---|
Supporting Column | 4.24 m | 1.11 m | 4.22 m | 1.14 m | 0.02 m | 0.03 m |
Window 1 | 2.50 m | 1.20 m | 2.55 m | 1.23 m | 0.05 m | 0.03 m |
Window 2 | 0.92 m | 1.18 m | 1.17 m | 0.89 m | 0.01 m | 0.03 m |
Door | 2.13 m | 2.05 m | 2.17 m | 2.00 m | 0.04 m | 0.05 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, B.; Jiang, F.; Lu, B.; Gu, Z.; Li, Y.; Wang, S. Three-Dimensional Environment Mapping with a Rotary-Driven Lidar in Real Time. Sensors 2025, 25, 4870. https://doi.org/10.3390/s25154870
Tong B, Jiang F, Lu B, Gu Z, Li Y, Wang S. Three-Dimensional Environment Mapping with a Rotary-Driven Lidar in Real Time. Sensors. 2025; 25(15):4870. https://doi.org/10.3390/s25154870
Chicago/Turabian StyleTong, Baixin, Fangdi Jiang, Bo Lu, Zhiqiang Gu, Yan Li, and Shifeng Wang. 2025. "Three-Dimensional Environment Mapping with a Rotary-Driven Lidar in Real Time" Sensors 25, no. 15: 4870. https://doi.org/10.3390/s25154870
APA StyleTong, B., Jiang, F., Lu, B., Gu, Z., Li, Y., & Wang, S. (2025). Three-Dimensional Environment Mapping with a Rotary-Driven Lidar in Real Time. Sensors, 25(15), 4870. https://doi.org/10.3390/s25154870