Advances in Photoacoustic Imaging of Breast Cancer
Abstract
1. Introduction
1.1. Conventional Imaging Methods of Breast Cancer
1.2. Principles and Advantages of PAI
2. Breast PAI Systems
2.1. Bed-Based Imaging PAI Systems
2.2. Handheld PAI Systems
2.3. Other Forms of PAI Systems
System | Structure | Detector | Laser | Resolution | Imaging Depth | Scan Time | Advantages | Limitations |
---|---|---|---|---|---|---|---|---|
SBH-PACT (Lin et al.) [48] | bed-based | 512-ring array (2.25 MHz) | 1064 nm/10 Hz/8–12 ns | In-plane: 0.26 mm; elevation: 5.6 mm | 4 cm | ~15 s (single-breath) | fast scan; clear vessels | poor elevational resolution |
3D-PACT (Lin et al.) [51] | bed-based | 4 × 256 arc arrays (2.25 MHz) | 1064 nm/10 Hz/8–12 ns | 370 μm | 4 cm | ~10 s | isotropic resolution; fast; clear image | single-wavelength |
PAM-02 (Kyoto & Canon) [54] | bed-based | 600-planar (2 MHz) + 128-linear (6 MHz) | 756 & 797 nm/10 Hz/7 ns | ~1 mm | Phantom: ≥45 mm; Breast: ≥25 mm | depends on scan area | better resolution; PA/US fusion | low imaging depth |
PAM-03/PAI-03 (Kyoto & Canon) [55] | bed-based | 512-HDA (2 MHz) | 755 & 795 nm | ~0.5 mm | ~30 mm | ~4 min | shows small vessels missed by MRI | inaccurate sO2 |
PAI-04 (Kyoto & Canon) [56] | bed-based | 500-HDA (4 MHz) + 256-linear US | 756 & 797 nm/10 Hz | ~0.27 mm | <10 mm | ~2 min | improved resolution; PA/US + sO2 analysis | complex; clinical adaptability unverified |
PAM 2 (Schoustra et al.) [57] | bed-based | 12 × 32 arc arrays (1 MHz) | 755 nm (60 ns) + 1064 nm (5 ns)/10–20 Hz | ~1 mm | 22 mm | ~4 min | adjustable lighting | few elements |
PAM3 (Dantuma et al.) [58] | bed-based | 512-bowl array (1 MHz, d: 26 cm) | 720–860 nm/10 Hz/4.2 ns | axial: ~426 µm | 48 mm | ~5 min | sound velocity correction; multi-λ imaging | large size; high cost |
Imagio® (Seno Medical) [62] | handheld | 128 linear (0.1–12 MHz) | 757 nm (50 ns) + 1064 nm (15 ns)/5 Hz | axial: 0.42–0.47 mm; lateral: 0.73–0.81 mm | ≤40 mm | – | FDA-approved; HbO2/Hb quant; US fusion | limited FOV |
MSOT (Diot et al.) [65] | handheld | 256-curved (5 MHz, d: 12 cm) | 680–980 nm (28 λ); 50 Hz/8 ns | 200–300 µm | ≤30 mm | 2–4 min (0.56 s/frame) | High res; vascular mapping | needs photon correction; motion artifacts |
Handheld PAI (Li et al. & Mindray) [66] | handheld | 192-linear US (5.8 MHz) | 750/830 nm/10 Hz | – | – | ~40 s (4 cm/0.1 cm/s) | PA/US fusion; real-time; sO2 mapping | low frame rate; motion artifacts |
3D multispectral PAI (Dean-Ben et al.) [67] | handheld | 256-spherical (4 MHz, r: 40 mm) | 690–900 nm/<10 ns | ~200 µm | ≥2.2 cm | – | fast 3D + functional mapping | shallow in dense tissue; motion-sensitive |
Acuity Echo® (iThera Medical GmbH) [68] | handheld | 256-arc (4 MHz)/256–384 hemispherical cup (8 MHz) | 660–1300 nm/≤25 Hz/28 λ in 1.1 s | 80–400 µm | 4cm (2D detector) | – | fast multi-λ imaging; CE-Marked | cannot assess depth; tissue limits unclear |
MSOT inVision 512-ECHO (iThera Medical GmbH) [69] | handheld | 256-spherical (5 MHz, 125°) | 660–1300 nm/10 Hz | In-plane: 150 µm | 5mm | – | high resolution | low imaging depth |
PA-Smart (Zhang et al.) [50] | scanning (like mammography) | 1D linear (2 × 48) | 1064 nm/10 Hz/9 ns | lateral: 1.12–1.57 mm; elevation: 0.60–0.63 mm | 4 cm | ~33 s | large FOV (10 × 10 × 4 cm3) | limited small vessel resolution |
DSM (Nyayapathi et al.) [81] | scanning (like mammography) | 2 × 128-linear array (2.25 MHz) | 1064 nm/6–10 Hz/10 ns | ~1 mm; elevation: 1.47 mm (2D), 1.05 mm (3D) | Up to 7 cm | ~60 s | unprecedented 7 cm imaging depth | low resolution |
3. Noninvasive Screening and Diagnostic Capacities of PAI
4. Evaluation of Breast Cancer Treatment
5. Discussion and Conclusion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, W.; Chen, M.; Qiao, Y.; Zhao, F. Global Guidelines for Breast Cancer Screening: A Systematic Review. Breast 2022, 64, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Harper, A.; McCormack, V.; Sung, H.; Houssami, N.; Morgan, E.; Mutebi, M.; Garvey, G.; Soerjomataram, I.; Fidler-Benaoudia, M.M. Global Patterns and Trends in Breast Cancer Incidence and Mortality across 185 Countries. Nat. Med. 2025, 31, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, M.; Niederacher, D.; Schnürch, H.-G.; Gusterson, B.A.; Bender, H.G. Multistep Carcinogenesis of Breast Cancer and Tumour Heterogeneity. J. Mol. Med. 1997, 75, 429–439. [Google Scholar] [CrossRef]
- Nik-Zainal, S.; Davies, H.; Staaf, J.; Ramakrishna, M.; Glodzik, D.; Zou, X.; Martincorena, I.; Alexandrov, L.B.; Martin, S.; Wedge, D.C. Landscape of Somatic Mutations in 560 Breast Cancer Whole-Genome Sequences. Nature 2016, 534, 47–54. [Google Scholar] [CrossRef]
- Nolan, E.; Lindeman, G.J.; Visvader, J.E. Deciphering Breast Cancer: From Biology to the Clinic. Cell 2023, 186, 1708–1728. [Google Scholar] [CrossRef]
- Bertucci, F.; Finetti, P.; Birnbaum, D. Basal Breast Cancer: A Complex and Deadly Molecular Subtype. Curr. Mol. Med. 2012, 12, 96–110. [Google Scholar] [CrossRef]
- Marvalim, C.; Datta, A.; Lee, S.C. Role of P53 in Breast Cancer Progression: An Insight into P53 Targeted Therapy. Theranostics 2023, 13, 1421. [Google Scholar] [CrossRef]
- Yersal, O.; Barutca, S. Biological Subtypes of Breast Cancer: Prognostic and Therapeutic Implications. World J. Clin. Oncol. 2014, 5, 412. [Google Scholar] [CrossRef]
- Vaupel, P.; Multhoff, G. Hypoxia-/HIF-1α-Driven Factors of the Tumor Microenvironment Impeding Antitumor Immune Responses and Promoting Malignant Progression. In Oxygen Transport to Tissue XL; Springer: Cham, Switzerland, 2018; pp. 171–175. [Google Scholar]
- Jamil, A.; Qureshi, Z.; Amankwah, M. Dual Inhibition of HER2 and VEGF Pathways in Breast Cancer: A Meta-Analysis of Outcomes. J. Clin. Oncol. 2025, 43, e13026. [Google Scholar] [CrossRef]
- CW, E. The Value of Histological Grade in Breast Cancer: Experience from a Large Study with Long-Term Follow-Up. Histopathology 1991, 19, 403–410. [Google Scholar]
- Badowska-Kozakiewicz, A.; Sobol, M.; Patera, J.; Kozłowski, W. Immunohistochemical Evaluation of Human Epidermal Growth Factor Receptor 2 and Estrogen and Progesterone Receptors in Invasive Breast Cancer in Women. Arch. Med. Sci. 2013, 9, 466–471. [Google Scholar] [CrossRef]
- Rosen, P.P. Rosen’s Breast Pathology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; ISBN 0-7817-2379-5. [Google Scholar]
- Badowska-Kozakiewicz, A.; Liszcz, A.; Sobol, M.; Patera, J. Retrospective Evaluation of Histopathological Examinations in Invasive Ductal Breast Cancer of No Special Type: An Analysis of 691 Patients. Arch. Med. Sci. 2017, 13, 1408–1415. [Google Scholar] [CrossRef] [PubMed]
- Turajlic, S.; Sottoriva, A.; Graham, T.; Swanton, C. Resolving Genetic Heterogeneity in Cancer. Nat. Rev. Genet. 2019, 20, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Delaloge, S.; Khan, S.A.; Wesseling, J.; Whelan, T. Ductal Carcinoma in Situ of the Breast: Finding the Balance between Overtreatment and Undertreatment. Lancet 2024, 403, 2734–2746. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, L.; Al Ghamdi, M.; Collado-Mesa, F.; Abdel-Mottaleb, M. Convolutional Neural Networks for Breast Cancer Detection in Mammography: A Survey. Comput. Biol. Med. 2021, 131, 104248. [Google Scholar] [CrossRef]
- Loizidou, K.; Elia, R.; Pitris, C. Computer-Aided Breast Cancer Detection and Classification in Mammography: A Comprehensive Review. Comput. Biol. Med. 2023, 153, 106554. [Google Scholar] [CrossRef]
- Aberle, D.R.; Chiles, C.; Gatsonis, C.; Hillman, B.J.; Johnson, C.D.; McClennan, B.L.; Mitchell, D.G.; Pisano, E.D.; Schnall, M.D.; Sorensen, A.G. Imaging and Cancer: Research Strategy of the American College of Radiology Imaging Network. Radiology 2005, 235, 741–751. [Google Scholar] [CrossRef]
- Leung, J.W. Screening Mammography Reduces Morbidity of Breast Cancer Treatment. Am. J. Roentgenol. 2005, 184, 1508–1509. [Google Scholar] [CrossRef]
- Colin, C.; de Vathaire, F.; Noël, A.; Charlot, M.; Devic, C.; Foray, N.; Valette, P.-J. Updated Relevance of Mammographic Screening Modalities in Women Previously Treated with Chest Irradiation for Hodgkin Disease. Radiology 2012, 265, 669–676. [Google Scholar] [CrossRef]
- Tokunaga, M. Breast Cancer among Atomic Bomb Survivors; Radiation Effects Research Foundation: Hiroshima, Japan, 1978. [Google Scholar]
- Little, M. Comparison of the Risks of Cancer Incidence and Mortality Following Radiation Therapy for Benign and Malignant Disease with the Cancer Risks Observed in the Japanese A-Bomb Survivors. Int. J. Radiat. Biol. 2001, 77, 431–464. [Google Scholar] [CrossRef]
- Henderson, T.O.; Amsterdam, A.; Bhatia, S.; Hudson, M.M.; Meadows, A.T.; Neglia, J.P.; Diller, L.R.; Constine, L.S.; Smith, R.A.; Mahoney, M.C. Systematic Review: Surveillance for Breast Cancer in Women Treated with Chest Radiation for Childhood, Adolescent, or Young Adult Cancer. Ann. Intern. Med. 2010, 152, 444–455. [Google Scholar] [CrossRef]
- Sharma, N.; McMahon, M.; Haigh, I.; Chen, Y.; Dall, B.J. The Potential Impact of Digital Breast Tomosynthesis on the Benign Biopsy Rate in Women Recalled within the UK Breast Screening Programme. Radiology 2019, 291, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Nayak, K.S.; Lim, Y.; Campbell-Washburn, A.E.; Steeden, J. Real-time Magnetic Resonance Imaging. J. Magn. Reson. Imaging 2022, 55, 81–99. [Google Scholar] [CrossRef]
- Lin, L.; Wang, L.V. Photoacoustic Imaging. In Optical Imaging in Human Disease and Biological Research; Wei, X., Gu, B., Eds.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2021; Volume 3233, pp. 147–175. ISBN 9789811576263. [Google Scholar]
- Zangabad, R.P.; Iskander-Rizk, S.; van der Meulen, P.; Meijlink, B.; Kooiman, K.; Wang, T.; van der Steen, A.F.; van Soest, G. Photoacoustic Flow Velocity Imaging Based on Complex Field Decorrelation. Photoacoustics 2021, 22, 100256. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Kim, J.Y.; Choi, W.; Kim, C. High-Resolution Functional Photoacoustic Monitoring of Vascular Dynamics in Human Fingers. Photoacoustics 2021, 23, 100282. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Lan, H.; Qin, A.; Sun, T.; Shao, D.; Gao, F.; Yao, J.; Avanaki, K.; Nie, L. Dynamic Synthetic-Scanning Photoacoustic Tracking Monitors Hepatic and Renal Clearance Pathway of Exogeneous Probes in vivo. Light Sci. Appl. 2024, 13, 304. [Google Scholar] [CrossRef]
- Cao, Y.; Dumani, D.S.; Hallam, K.A.; Emelianov, S.Y.; Ran, H. Real-Time Monitoring of NIR-Triggered Drug Release from Phase-Changeable Nanodroplets by Photoacoustic/Ultrasound Imaging. Photoacoustics 2023, 30, 100474. [Google Scholar] [CrossRef]
- Chu, C.; Yu, J.; Ren, E.; Ou, S.; Zhang, Y.; Wu, Y.; Wu, H.; Zhang, Y.; Zhu, J.; Dai, Q. Multimodal Photoacoustic Imaging-Guided Regression of Corneal Neovascularization: A Non-Invasive and Safe Strategy. Adv. Sci. 2020, 7, 2000346. [Google Scholar] [CrossRef]
- Lin, L.; Wang, L.V. The Emerging Role of Photoacoustic Imaging in Clinical Oncology. Nat. Rev. Clin. Oncol. 2022, 19, 365–384. [Google Scholar] [CrossRef]
- Qiu, T.; Lan, Y.; Gao, W.; Zhou, M.; Liu, S.; Huang, W.; Zeng, S.; Pathak, J.L.; Yang, B.; Zhang, J. Photoacoustic Imaging as a Highly Efficient and Precise Imaging Strategy for the Evaluation of Brain Diseases. Quant. Imaging Med. Surg. 2021, 11, 2169. [Google Scholar] [CrossRef]
- Jo, J.; Tian, C.; Xu, G.; Sarazin, J.; Schiopu, E.; Gandikota, G.; Wang, X. Photoacoustic Tomography for Human Musculoskeletal Imaging and Inflammatory Arthritis Detection. Photoacoustics 2018, 12, 82–89. [Google Scholar] [CrossRef]
- Lao, Y.; Xing, D.; Yang, S.; Xiang, L. Noninvasive Photoacoustic Imaging of the Developing Vasculature during Early Tumor Growth. Phys. Med. Biol. 2008, 53, 4203. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, R.; Han, T.; Pan, Y.; Zhang, G.; Long, X.; Zhao, C.; Wang, M.; Li, X.; Yang, F. Validation of Photoacoustic/Ultrasound Dual Imaging in Evaluating Blood Oxygen Saturation. Biomed. Opt. Express 2022, 13, 5551–5570. [Google Scholar] [CrossRef]
- Laufer, J.; Johnson, P.; Zhang, E.; Treeby, B.; Cox, B.; Pedley, B.; Beard, P. In Vivo Preclinical Photoacoustic Imaging of Tumor Vasculature Development and Therapy. J. Biomed. Opt. 2012, 17, 056016. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.V. Photoacoustic Microscopy. Laser Photonics Rev. 2013, 7, 758–778. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Li, Y.; Qi, W.; Xi, L. Photoacoustic Endoscopy: A Progress Review. J. Biophotonics 2020, 13, e202000217. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Yao, J.; Wang, L.V. Photoacoustic Tomography: Principles and Advances. Electromagn. Waves 2014, 147, 1. [Google Scholar] [CrossRef] [PubMed]
- Attia, A.B.E.; Chuah, S.Y.; Razansky, D.; Ho, C.J.H.; Malempati, P.; Dinish, U.; Bi, R.; Fu, C.Y.; Ford, S.J.; Lee, J.S.-S. Noninvasive Real-Time Characterization of Non-Melanoma Skin Cancers with Handheld Optoacoustic Probes. Photoacoustics 2017, 7, 20–26. [Google Scholar] [CrossRef]
- Li, D.; Humayun, L.; Vienneau, E.; Vu, T.; Yao, J. Seeing through the Skin: Photoacoustic Tomography of Skin Vasculature and Beyond. JID Innov. 2021, 1, 100039. [Google Scholar] [CrossRef]
- Wong, T.T.; Zhang, R.; Hai, P.; Zhang, C.; Pleitez, M.A.; Aft, R.L.; Novack, D.V.; Wang, L.V. Fast Label-Free Multilayered Histology-like Imaging of Human Breast Cancer by Photoacoustic Microscopy. Sci. Adv. 2017, 3, e1602168. [Google Scholar] [CrossRef]
- Wu, Z.; Li, L.; Yang, Y.; Hu, P.; Li, Y.; Yang, S.-Y.; Wang, L.V.; Gao, W. A Microrobotic System Guided by Photoacoustic Computed Tomography for Targeted Navigation in Intestines in Vivo. Sci. Robot. 2019, 4, eaax0613. [Google Scholar] [CrossRef] [PubMed]
- Kothapalli, S.-R.; Sonn, G.A.; Choe, J.W.; Nikoozadeh, A.; Bhuyan, A.; Park, K.K.; Cristman, P.; Fan, R.; Moini, A.; Lee, B.C. Simultaneous Transrectal Ultrasound and Photoacoustic Human Prostate Imaging. Sci. Transl. Med. 2019, 11, eaav2169. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.P.; Bokde, N.; Sinha, S. Photoacoustic Imaging for Management of Breast Cancer: A Literature Review and Future Perspectives. Appl. Sci. 2020, 10, 767. [Google Scholar] [CrossRef]
- Lin, L.; Hu, P.; Shi, J.; Appleton, C.M.; Maslov, K.; Li, L.; Zhang, R.; Wang, L.V. Single-Breath-Hold Photoacoustic Computed Tomography of the Breast. Nat. Commun. 2018, 9, 2352. [Google Scholar] [CrossRef]
- Nyayapathi, N.; Xia, J. Photoacoustic Imaging of Breast Cancer: A Mini Review of System Design and Image Features. J. Biomed. Opt. 2019, 24, 121911. [Google Scholar] [CrossRef]
- Zhang, G.; Li, W.; Yang, M.; Li, C. Developing a Photoacoustic Whole-Breast Imaging System Based on the Synthetic Matrix Array. Front. Phys. 2020, 8, 600589. [Google Scholar] [CrossRef]
- Lin, L.; Hu, P.; Tong, X.; Na, S.; Cao, R.; Yuan, X.; Garrett, D.C.; Shi, J.; Maslov, K.; Wang, L.V. High-Speed Three-Dimensional Photoacoustic Computed Tomography for Preclinical Research and Clinical Translation. Nat Commun 2021, 12, 882. [Google Scholar] [CrossRef]
- Shiina, T.; Toi, M.; Yagi, T. Development and Clinical Translation of Photoacoustic Mammography. Biomed. Eng. Lett. 2018, 8, 157–165. [Google Scholar] [CrossRef]
- Fukutani, K.; Someda, Y.; Taku, M.; Asao, Y.; Kobayashi, S.; Yagi, T.; Yamakawa, M.; Shiina, T.; Sugie, T.; Toi, M. Characterization of Photoacoustic Tomography System with Dual Illumination; SPIE: Bellingham, WA, USA, 2011; Volume 7899, pp. 486–492. [Google Scholar]
- Asao, Y.; Hashizume, Y.; Suita, T.; Nagae, K.; Fukutani, K.; Sudo, Y.; Matsushita, T.; Kobayashi, S.; Tokiwa, M.; Yamaga, I. Photoacoustic Mammography Capable of Simultaneously Acquiring Photoacoustic and Ultrasound Images. J. Biomed. Opt. 2016, 21, 116009. [Google Scholar] [CrossRef]
- Toi, M.; Asao, Y.; Matsumoto, Y.; Sekiguchi, H.; Yoshikawa, A.; Takada, M.; Kataoka, M.; Endo, T.; Kawaguchi-Sakita, N.; Kawashima, M. Visualization of Tumor-Related Blood Vessels in Human Breast by Photoacoustic Imaging System with a Hemispherical Detector Array. Sci. Rep. 2017, 7, 41970. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Asao, Y.; Sekiguchi, H.; Yoshikawa, A.; Ishii, T.; Nagae, K.; Kobayashi, S.; Tsuge, I.; Saito, S.; Takada, M. Visualising Peripheral Arterioles and Venules through High-Resolution and Large-Area Photoacoustic Imaging. Sci. Rep. 2018, 8, 14930. [Google Scholar] [CrossRef] [PubMed]
- Schoustra, S.M.; Piras, D.; Huijink, R.; op ‘t Root, T.J.; Alink, L.; Kobold, W.M.; Steenbergen, W.; Manohar, S. Twente Photoacoustic Mammoscope 2: System Overview and Three-Dimensional Vascular Network Images in Healthy Breasts. J. Biomed. Opt. 2019, 24, 121909. [Google Scholar] [CrossRef] [PubMed]
- Dantuma, M.; Lucka, F.; Kruitwagen, S.; Javaherian, A.; Alink, L.; van Meerdervoort, R.; Nanninga, M.; Root, T.; De Santi, B.; Budisky, J. Fully Three-Dimensional Sound Speed-Corrected Multi-Wavelength Photoacoustic Breast Tomography. arXiv 2023, arXiv:2308.06754. [Google Scholar]
- Matsumoto, Y.; Asao, Y.; Yoshikawa, A.; Sekiguchi, H.; Takada, M.; Furu, M.; Saito, S.; Kataoka, M.; Abe, H.; Yagi, T. Label-Free Photoacoustic Imaging of Human Palmar Vessels: A Structural Morphological Analysis. Sci. Rep. 2018, 8, 786. [Google Scholar] [CrossRef]
- Sato, Y.; Shiraga, N.; Nakajima, S.; Tamura, S.; Kikinis, R. Local Maximum Intensity Projection (LMIP: A New Rendering Method for Vascular Visualization. J. Comput. Assist. Tomogr. 1998, 22, 912–917. [Google Scholar] [CrossRef]
- Schoustra, S.M.; De Santi, B.; op’t Root, T.J.; Klazen, C.A.; van der Schaaf, M.; Veltman, J.; Steenbergen, W.; Manohar, S. Imaging Breast Malignancies with the Twente Photoacoustic Mammoscope 2. PLoS ONE 2023, 18, e0281434. [Google Scholar] [CrossRef]
- Stephens, K. FDA Approves Seno Medical’s Breast Cancer Diagnostic Technology. AXIS Imaging News, 19 January 2021. [Google Scholar]
- Neuschler, E.I.; Butler, R.; Young, C.A.; Barke, L.D.; Bertrand, M.L.; Böhm-Vélez, M.; Destounis, S.; Donlan, P.; Grobmyer, S.R.; Katzen, J. A Pivotal Study of Optoacoustic Imaging to Diagnose Benign and Malignant Breast Masses: A New Evaluation Tool for Radiologists. Radiology 2018, 287, 398–412. [Google Scholar] [CrossRef]
- Oraevsky, A.; Clingman, B.; Zalev, J.; Stavros, A.; Yang, W.; Parikh, J. Clinical Optoacoustic Imaging Combined with Ultrasound for Coregistered Functional and Anatomical Mapping of Breast Tumors. Photoacoustics 2018, 12, 30–45. [Google Scholar] [CrossRef]
- Diot, G.; Metz, S.; Noske, A.; Liapis, E.; Schroeder, B.; Ovsepian, S.V.; Meier, R.; Rummeny, E.; Ntziachristos, V. Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer. Clin. Cancer Res. 2017, 23, 6912–6922. [Google Scholar] [CrossRef]
- Han, T.; Yang, M.; Yang, F.; Zhao, L.; Jiang, Y.; Li, C. A Three-Dimensional Modeling Method for Quantitative Photoacoustic Breast Imaging with Handheld Probe. Photoacoustics 2021, 21, 100222. [Google Scholar] [CrossRef]
- Deán-Ben, X.L.; Fehm, T.F.; Gostic, M.; Razansky, D. Volumetric Hand-held Optoacoustic Angiography as a Tool for Real-time Screening of Dense Breast. J. Biophotonics 2016, 9, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Riksen, J.J.; Nikolaev, A.V.; van Soest, G. Photoacoustic Imaging on Its Way toward Clinical Utility: A Tutorial Review Focusing on Practical Application in Medicine. J. Biomed. Opt. 2023, 28, 121205. [Google Scholar] [CrossRef]
- Goh, Y.; Balasundaram, G.; Tan, H.M.; Putti, T.C.; Renzhe, B.; Hartman, M.; Buhari, S.A.; Ng, C.W.Q.; Lui, S.A.; Fang, E. Ultrasound-Guided Photoacoustic (US-PA) Tomography of the Breast: Biochemical Differentiation Using Intrinsic Tissue Markers—Lipids, Collagen and Hemoglobin with Histopathologic Correlation. Sci. Rep. 2024, 14, 18054. [Google Scholar]
- Lee, C.; Kim, C.; Park, B. Review of Three-Dimensional Handheld Photoacoustic and Ultrasound Imaging Systems and Their Applications. Sensors 2023, 23, 8149. [Google Scholar] [CrossRef]
- Stoffels, I.; Morscher, S.; Helfrich, I.; Hillen, U.; Leyh, J.; Burton, N.C.; Sardella, T.C.; Claussen, J.; Poeppel, T.D.; Bachmann, H.S. Metastatic Status of Sentinel Lymph Nodes in Melanoma Determined Noninvasively with Multispectral Optoacoustic Imaging. Sci. Transl. Med. 2015, 7, 317ra199. [Google Scholar] [CrossRef]
- Knieling, F.; Neufert, C.; Hartmann, A.; Claussen, J.; Urich, A.; Egger, C.; Vetter, M.; Fischer, S.; Pfeifer, L.; Hagel, A. Multispectral Optoacoustic Tomography for Assessment of Crohn’s Disease Activity. N. Engl. J. Med. 2017, 376, 1292–1294. [Google Scholar] [CrossRef]
- Reber, J.; Willershäuser, M.; Karlas, A.; Paul-Yuan, K.; Diot, G.; Franz, D.; Fromme, T.; Ovsepian, S.V.; Bézière, N.; Dubikovskaya, E. Non-Invasive Measurement of Brown Fat Metabolism Based on Optoacoustic Imaging of Hemoglobin Gradients. Cell Metab. 2018, 27, 689–701. [Google Scholar] [CrossRef]
- Li, Y.; Schnabl, K.; Gabler, S.-M.; Willershäuser, M.; Reber, J.; Karlas, A.; Laurila, S.; Lahesmaa, M.; Din, M.u.; Bast-Habersbrunner, A. Secretin-Activated Brown Fat Mediates Prandial Thermogenesis to Induce Satiation. Cell 2018, 175, 1561–1574. [Google Scholar] [CrossRef]
- Yang, H.; Jüstel, D.; Prakash, J.; Karlas, A.; Helfen, A.; Masthoff, M.; Wildgruber, M.; Ntziachristos, V. Soft Ultrasound Priors in Optoacoustic Reconstruction: Improving Clinical Vascular Imaging. Photoacoustics 2020, 19, 100172. [Google Scholar] [CrossRef]
- Masthoff, M.; Helfen, A.; Claussen, J.; Karlas, A.; Markwardt, N.A.; Ntziachristos, V.; Eisenblätter, M.; Wildgruber, M. Use of Multispectral Optoacoustic Tomography to Diagnose Vascular Malformations. JAMA Dermatol. 2018, 154, 1457–1462. [Google Scholar] [CrossRef]
- Roll, W.; Markwardt, N.A.; Masthoff, M.; Helfen, A.; Claussen, J.; Eisenblätter, M.; Hasenbach, A.; Hermann, S.; Karlas, A.; Wildgruber, M. Multispectral Optoacoustic Tomography of Benign and Malignant Thyroid Disorders: A Pilot Study. J. Nucl. Med. 2019, 60, 1461–1466. [Google Scholar] [CrossRef]
- Masthoff, M.; Helfen, A.; Claussen, J.; Roll, W.; Karlas, A.; Becker, H.; Gabriëls, G.; Riess, J.; Heindel, W.; Schäfers, M. Multispectral Optoacoustic Tomography of Systemic Sclerosis. J. Biophotonics 2018, 11, e201800155. [Google Scholar] [CrossRef]
- Regensburger, A.P.; Fonteyne, L.M.; Jüngert, J.; Wagner, A.L.; Gerhalter, T.; Nagel, A.M.; Heiss, R.; Flenkenthaler, F.; Qurashi, M.; Neurath, M.F. Detection of Collagens by Multispectral Optoacoustic Tomography as an Imaging Biomarker for Duchenne Muscular Dystrophy. Nat. Med. 2019, 25, 1905–1915. [Google Scholar] [CrossRef] [PubMed]
- Kukačka, J.; Metz, S.; Dehner, C.; Muckenhuber, A.; Paul-Yuan, K.; Karlas, A.; Fallenberg, E.M.; Rummeny, E.; Jüstel, D.; Ntziachristos, V. Image Processing Improvements Afford Second-Generation Handheld Optoacoustic Imaging of Breast Cancer Patients. Photoacoustics 2022, 26, 100343. [Google Scholar] [CrossRef] [PubMed]
- Nyayapathi, N.; Lim, R.; Zhang, H.; Zheng, W.; Wang, Y.; Tiao, M.; Oh, K.W.; Fan, X.C.; Bonaccio, E.; Takabe, K.; et al. Dual Scan Mammoscope (DSM)—A New Portable Photoacoustic Breast Imaging System With Scanning in Craniocaudal Plane. IEEE Trans. Biomed. Eng. 2020, 67, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Nyayapathi, N.; Zhang, H.; Zheng, E.; Nagarajan, S.; Bonaccio, E.; Takabe, K.; Fan, X.C.; Xia, J. Photoacoustic Dual-Scan Mammoscope: Results from 38 Patients. Biomed. Opt. Express 2021, 12, 2054–2063. [Google Scholar] [CrossRef]
- Zheng, E.; Zhang, H.; Goswami, S.; Kabir, I.E.; Doyley, M.M.; Xia, J. Second-Generation Dual Scan Mammoscope with Photoacoustic, Ultrasound, and Elastographic Imaging Capabilities. Front. Oncol. 2021, 11, 779071. [Google Scholar] [CrossRef]
- Butler, R.; Lavin, P.T.; Tucker, F.L.; Barke, L.D.; Böhm-Vélez, M.; Destounis, S.; Grobmyer, S.R.; Katzen, J.; Kist, K.A.; Makariou, E.V. Optoacoustic Breast Imaging: Imaging-Pathology Correlation of Optoacoustic Features in Benign and Malignant Breast Masses. Am. J. Roentgenol. 2018, 211, 1155–1170. [Google Scholar] [CrossRef]
- de Heer, E.C.; Jalving, M.; Harris, A.L. HIFs, Angiogenesis, and Metabolism: Elusive Enemies in Breast Cancer. J. Clin. Investig. 2020, 130, 5074–5087. [Google Scholar] [CrossRef]
- Li, G.; Huang, Z.; Tian, H.; Wu, H.; Zheng, J.; Wang, M.; Mo, S.; Chen, Z.; Xu, J.; Dong, F. Deep Learning Combined with Attention Mechanisms to Assist Radiologists in Enhancing Breast Cancer Diagnosis: A Study on Photoacoustic Imaging. Biomed. Opt. Express 2024, 15, 4689–4704. [Google Scholar] [CrossRef]
- Fakhrejahani, E.; Torii, M.; Kitai, T.; Kanao, S.; Asao, Y.; Hashizume, Y.; Mikami, Y.; Yamaga, I.; Kataoka, M.; Sugie, T. Clinical Report on the First Prototype of a Photoacoustic Tomography System with Dual Illumination for Breast Cancer Imaging. PLoS ONE 2015, 10, e0139113. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, L.; Zhao, C.; Wang, M.; Liu, S.; Li, J.; Zhao, R.; Wang, R.; Yang, F.; Zhu, L. Exploring the Diagnostic Value of Photoacoustic Imaging for Breast Cancer: The Identification of Regional Photoacoustic Signal Differences of Breast Tumors. Biomed. Opt. Express 2021, 12, 1407–1421. [Google Scholar] [CrossRef]
- Zalev, J.; Richards, L.M.; Clingman, B.A.; Harris, J.; Cantu, E.; Menezes, G.L.; Avila, C.; Bertrand, A.; Saenz, X.; Miller, S. Opto-Acoustic Imaging of Relative Blood Oxygen Saturation and Total Hemoglobin for Breast Cancer Diagnosis. J. Biomed. Opt. 2019, 24, 121915. [Google Scholar] [CrossRef]
- Tong, X.; Liu, C.Z.; Luo, Y.; Lin, L.; Dzubnar, J.; Invernizzi, M.; Delos Santos, S.; Zhang, Y.; Cao, R.; Hu, P. Panoramic Photoacoustic Computed Tomography with Learning-Based Classification Enhances Breast Lesion Characterization. Nat. Biomed. Eng. 2025, 1–17. [Google Scholar] [CrossRef]
- Menezes, G.L.; Pijnappel, R.M.; Meeuwis, C.; Bisschops, R.; Veltman, J.; Lavin, P.T.; Van De Vijver, M.J.; Mann, R.M. Downgrading of Breast Masses Suspicious for Cancer by Using Optoacoustic Breast Imaging. Radiology 2018, 288, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhao, L.; Yang, F.; Wang, M.; Su, N.; Zhao, C.; Gui, Y.; Wei, Y.; Zhang, R.; Li, J. Quantitative Analysis of Breast Tumours Aided by Three-Dimensional Photoacoustic/Ultrasound Functional Imaging. Sci. Rep. 2020, 10, 8047. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Gu, I.Y.-H.; Jakola, A.S.; Yang, J. Enlarged Training Dataset by Pairwise GANs for Molecular-Based Brain Tumor Classification. IEEE Access 2020, 8, 22560–22570. [Google Scholar] [CrossRef]
- Zhan, B.; Xiao, J.; Cao, C.; Peng, X.; Zu, C.; Zhou, J.; Wang, Y. Multi-Constraint Generative Adversarial Network for Dose Prediction in Radiotherapy. Med. Image Anal. 2022, 77, 102339. [Google Scholar] [CrossRef]
- Wolterink, J.M.; Leiner, T.; Viergever, M.A.; Išgum, I. Generative Adversarial Networks for Noise Reduction in Low-Dose CT. IEEE Trans. Med. Imaging 2017, 36, 2536–2545. [Google Scholar] [CrossRef]
- Ko, Y.; Moon, S.; Baek, J.; Shim, H. Rigid and Non-Rigid Motion Artifact Reduction in X-Ray CT Using Attention Module. Med. Image Anal. 2021, 67, 101883. [Google Scholar] [CrossRef]
- Yang, G.; Yu, S.; Dong, H.; Slabaugh, G.; Dragotti, P.L.; Ye, X.; Liu, F.; Arridge, S.; Keegan, J.; Guo, Y. DAGAN: Deep de-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction. IEEE Trans. Med. Imaging 2017, 37, 1310–1321. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Hu, Y.-C.; Tyagi, N.; Zhang, P.; Rimner, A.; Mageras, G.S.; Deasy, J.O.; Veeraraghavan, H. Tumor-Aware, Adversarial Domain Adaptation from CT to MRI for Lung Cancer Segmentation; Springer: Cham, Switzerland, 2018; pp. 777–785. [Google Scholar]
- Tuysuzoglu, A.; Tan, J.; Eissa, K.; Kiraly, A.P.; Diallo, M.; Kamen, A. Deep Adversarial Context-Aware Landmark Detection for Ultrasound Imaging; Springer: Cham, Switzerland, 2018; pp. 151–158. [Google Scholar]
- Ren, J.; Hacihaliloglu, I.; Singer, E.A.; Foran, D.J.; Qi, X. Adversarial Domain Adaptation for Classification of Prostate Histopathology Whole-Slide Images; Springer: Cham, Switzerland, 2018; pp. 201–209. [Google Scholar]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-Attention Generative Adversarial Networks; PMLR: London, UK, 2019; pp. 7354–7363. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar] [CrossRef]
- Jiang, Y.; Chang, S.; Wang, Z. Transgan: Two Pure Transformers Can Make One Strong Gan, and That Can Scale Up. Adv. Neural Inf. Process. Syst. 2021, 34, 14745–14758. [Google Scholar]
- Luo, Y.; Wang, Y.; Zu, C.; Zhan, B.; Wu, X.; Zhou, J.; Shen, D.; Zhou, L. 3D Transformer-GAN for High-Quality PET Reconstruction; Springer: Berlin/Heidelberg, Germany, 2021; pp. 276–285. [Google Scholar]
- Ma, Y.; Yang, C.; Zhang, J.; Wang, Y.; Gao, F.; Gao, F. Human Breast Numerical Model Generation Based on Deep Learning for Photoacoustic Imaging. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1919–1922. [Google Scholar]
- Lou, Y.; Zhou, W.; Matthews, T.P.; Appleton, C.M.; Anastasio, M.A. Generation of Anatomically Realistic Numerical Phantoms for Photoacoustic and Ultrasonic Breast Imaging. J. Biomed. Opt. 2017, 22, 041015. [Google Scholar] [CrossRef]
- John, M.; Barhumi, I. Unrolled Deep Learning for Breast Cancer Detection Using Limited-View Photoacoustic Tomography Data. Med. Biol. Eng. Comput. 2025, 63, 1777–1795. [Google Scholar] [CrossRef]
- Yamaga, I.; Kawaguchi-Sakita, N.; Asao, Y.; Matsumoto, Y.; Yoshikawa, A.; Fukui, T.; Takada, M.; Kataoka, M.; Kawashima, M.; Fakhrejahani, E. Vascular Branching Point Counts Using Photoacoustic Imaging in the Superficial Layer of the Breast: A Potential Biomarker for Breast Cancer. Photoacoustics 2018, 11, 6–13. [Google Scholar] [CrossRef]
- Cocconi, G.; Di Blasio, B.; Alberti, G.; Bisagni, G.; Botti, E.; Peracchia, G. Problems in Evaluating Response of Primary Breast Cancer to Systemic Therapy. Breast Cancer Res. Treat. 1984, 4, 309–313. [Google Scholar] [CrossRef]
- Lin, L.; Tong, X.; Hu, P.; Invernizzi, M.; Lai, L.; Wang, L.V. Photoacoustic Computed Tomography of Breast Cancer in Response to Neoadjuvant Chemotherapy. Adv. Sci. 2021, 8, 2003396. [Google Scholar] [CrossRef]
- Gupta, M.K.; Qin, R.-Y. Mechanism and Its Regulation of Tumor-Induced Angiogenesis. World J. Gastroenterol. WJG 2003, 9, 1144. [Google Scholar] [CrossRef]
- Hohenberger, P.; Felgner, C.; Haensch, W.; Schlag, P.M. Tumor Oxygenation Correlates with Molecular Growth Determinants in Breast Cancer. Breast Cancer Res. Treat. 1998, 48, 97–106. [Google Scholar] [CrossRef]
- Garcia-Uribe, A.; Erpelding, T.N.; Krumholz, A.; Ke, H.; Maslov, K.; Appleton, C.; Margenthaler, J.A.; Wang, L.V. Dual-Modality Photoacoustic and Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer. Sci. Rep. 2015, 5, 15748. [Google Scholar] [CrossRef] [PubMed]
- Thomas, V.; BISDAS, S. Lymph Node Staging. Top Magn Reson Imaging 2007, 18, 303–316. [Google Scholar]
- Hsueh, E.C.; Hansen, N.; Giuliano, A.E. Intraoperative Lymphatic Mapping and Sentinel Lymph Node Dissection in Breast Cancer. CA A Cancer J. Clin. 2000, 50, 279–291. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Wang, T.; Zhang, C.; Feng, T.; Tian, C. Three-dimensional Interventional Photoacoustic Imaging for Biopsy Needle Guidance with a Linear Array Transducer. J. Biophotonics 2019, 12, e201900212. [Google Scholar] [CrossRef]
- Piras, D.; Grijsen, C.; Schütte, P.; Steenbergen, W.; Manohar, S. Photoacoustic Needle: Minimally Invasive Guidance to Biopsy. J. Biomed. Opt. 2013, 18, 070502. [Google Scholar] [CrossRef]
- Balasundaram, G.; Krafft, C.; Zhang, R.; Dev, K.; Bi, R.; Moothanchery, M.; Popp, J.; Olivo, M. Biophotonic Technologies for Assessment of Breast Tumor Surgical Margins—A Review. J. Biophotonics 2021, 14, e202000280. [Google Scholar] [CrossRef]
- Imai, T.; Shi, J.; Wong, T.T.; Li, L.; Zhu, L.; Wang, L.V. High-Throughput Ultraviolet Photoacoustic Microscopy with Multifocal Excitation. J. Biomed. Opt. 2018, 23, 036007. [Google Scholar] [CrossRef]
- Kim, G.R.; Kang, J.; Kwak, J.Y.; Chang, J.H.; Kim, S.I.; Youk, J.H.; Moon, H.J.; Kim, M.J.; Kim, E.-K. Photoacoustic Imaging of Breast Microcalcifications: A Preliminary Study with 8-Gauge Core-Biopsied Breast Specimens. PLoS ONE 2014, 9, e105878. [Google Scholar] [CrossRef]
- Grootendorst, D.J.; Jose, J.; Fratila, R.M.; Visscher, M.; Velders, A.H.; Ten Haken, B.; Van Leeuwen, T.G.; Steenbergen, W.; Manohar, S.; Ruers, T.J. Evaluation of Superparamagnetic Iron Oxide Nanoparticles (Endorem®) as a Photoacoustic Contrast Agent for Intra-operative Nodal Staging. Contrast Media Mol. Imaging 2013, 8, 83–91. [Google Scholar] [CrossRef]
- Xi, L.; Zhou, G.; Gao, N.; Yang, L.; Gonzalo, D.A.; Hughes, S.J.; Jiang, H. Photoacoustic and Fluorescence Image-Guided Surgery Using a Multifunctional Targeted Nanoprobe. Ann. Surg. Oncol. 2014, 21, 1602–1609. [Google Scholar] [CrossRef]
- Chopra, A. Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda, MD, USA, 2004; Volume 2013. [Google Scholar]
- Gargiulo, S.; Albanese, S.; Mancini, M. State-of-the-Art Preclinical Photoacoustic Imaging in Oncology: Recent Advances in Cancer Theranostics. Contrast Media Mol. Imaging 2019, 2019, 5080267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, J.; Kahkoska, A.R.; Gu, Z. Photoacoustic Drug Delivery. Sensors 2017, 17, 1400. [Google Scholar] [CrossRef]
- Moore, C.; Jokerst, J.V. Strategies for Image-Guided Therapy, Surgery, and Drug Delivery Using Photoacoustic Imaging. Theranostics 2019, 9, 1550. [Google Scholar] [CrossRef]
- Manivasagan, P.; Bharathiraja, S.; Bui, N.Q.; Jang, B.; Oh, Y.-O.; Lim, I.G.; Oh, J. Doxorubicin-Loaded Fucoidan Capped Gold Nanoparticles for Drug Delivery and Photoacoustic Imaging. Int. J. Biol. Macromol. 2016, 91, 578–588. [Google Scholar] [CrossRef]
- Park, J.; Choi, S.; Knieling, F.; Clingman, B.; Bohndiek, S.; Wang, L.V.; Kim, C. Clinical Translation of Photoacoustic Imaging. Nat. Rev. Bioeng. 2025, 3, 193–212. [Google Scholar] [CrossRef]
- Defining the Clinical Niche for Photoacoustic Imaging. Nat. Rev. Bioeng. 2025, 3, 181. [CrossRef]
- Bohndiek, S.; Brunker, J.; Gröhl, J.; Hacker, L.; Joseph, J.; Vogt, W.C.; Armanetti, P.; Assi, H.; Bamber, J.C.; Beard, P.C. International Photoacoustic Standardisation Consortium (IPASC): Overview (Conference Presentation); SPIE: Bellingham, WA, USA, 2019; Volume 10878, p. 108781N. [Google Scholar]
- Bohndiek, S. Addressing Photoacoustics Standards. Nat. Photonics 2019, 13, 298. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Huang, K.; Chen, G.; Lin, L. Advances in Photoacoustic Imaging of Breast Cancer. Sensors 2025, 25, 4812. https://doi.org/10.3390/s25154812
Wu Y, Huang K, Chen G, Lin L. Advances in Photoacoustic Imaging of Breast Cancer. Sensors. 2025; 25(15):4812. https://doi.org/10.3390/s25154812
Chicago/Turabian StyleWu, Yang, Keer Huang, Guoxiong Chen, and Li Lin. 2025. "Advances in Photoacoustic Imaging of Breast Cancer" Sensors 25, no. 15: 4812. https://doi.org/10.3390/s25154812
APA StyleWu, Y., Huang, K., Chen, G., & Lin, L. (2025). Advances in Photoacoustic Imaging of Breast Cancer. Sensors, 25(15), 4812. https://doi.org/10.3390/s25154812