Recording of Cardiac Excitation Using a Novel Magnetocardiography System with Magnetoresistive Sensors Outside a Magnetic Shielded Room
Abstract
Highlights
- A novel MCG system using room-temperature magnetoresistive sensors was developed.
- The system reliably captured cardiac signals without magnetic shielding.
- Enables cost-effective and portable MCG suitable for clinical environments.
- Opens new possibilities for noninvasive cardiac diagnostics and monitoring.
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental System Design
- Ultra-high sensitivity and low noise characteristics enable highly accurate detection of weak magnetic signals.
- The design is optimized for biomagnetic applications, making it possible to detect biomagnetic signals and magnetic nanoparticles.
- Sensor array integration allows for simultaneous multi-point detection and high spatial resolution.
- The wide dynamic range and excellent linearity enable quantitative measurements without the need for magnetic shielding.
2.3. Study Protocol
2.4. Signal Processing
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Noise Reduction by ANC
3.2. Noise Reduction by Signal-Average and Bayesian SSP
3.3. Isomagnetic Field Maps During Signal Processing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glaser, R. Biophysics: An Introduction, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Zhu, K.; Kiourti, A. Real-time magnetocardiography with passive miniaturized coil array in earth ambient field. Sensors 2023, 23, 5567. [Google Scholar] [CrossRef]
- Brisinda, D.; Fenici, P.; Fenici, R. Clinical magnetocardiography: The unshielded bet-past, present, and future. Front. Cardiovasc. Med. 2023, 10, 1232882. [Google Scholar] [CrossRef]
- Xiao, W.; Sun, C.; Shen, L.; Feng, Y.; Liu, M.; Wu, Y.; Liu, X.; Wu, T.; Peng, X.; Guo, H. A movable unshielded magnetocardiography system. Sci. Adv. 2023, 9, eadg1746. [Google Scholar] [CrossRef]
- Hu, Z.; Ye, K.; Bai, M.; Yang, Z.; Lin, Q. Solving the magnetocardiography forward problem in a realistic three-dimensional heart-torso model. IEEE Access 2021, 9, 107095–107103. [Google Scholar] [CrossRef]
- Aita, S.; Ogata, K.; Yoshida, K.; Inaba, T.; Kosuge, H.; Machino, T.; Tsumagari, Y.; Hattori, A.; Ito, Y.; Komatsu, Y.; et al. Noninvasive mapping of premature ventricular contractions by merging magnetocardiography and computed tomography. JACC Clin. Electrophysiol. 2019, 5, 1144–1157. [Google Scholar] [CrossRef]
- Fenici, R.; Brisinda, D. Magnetocardiography provides non-invasive three-dimensional electroanatomical imaging of cardiac electrophysiology. Int. J. Cardiovasc. Imaging 2006, 22, 555–564. [Google Scholar] [CrossRef]
- Nakai, K.; Kawazoe, K.; Izumoto, H.; Tsuboi, J.; Oshima, Y.; Oka, T.; Yoshioka, K.; Shozushima, M.; Suwabe, A.; Itoh, M.; et al. Construction of a three-dimensional outline of the heart and conduction pathway by means of a 64-channel magnetocardiogram in patients with atrial flutter and fibrillation. Int. J. Cardiovasc. Imaging 2005, 21, 555–561, discussion 563. [Google Scholar] [CrossRef]
- Pei, G.; Wu, J.; Chen, D.; Guo, G.; Liu, S.; Hong, M.; Yan, T. Effects of an integrated neurofeedback system with dry electrodes: EEG acquisition and cognition assessment. Sensors 2018, 18, 3396. [Google Scholar] [CrossRef]
- Strasburger, J.F.; Eckstein, G.; Butler, M.; Noffke, P.; Wacker-Gussmann, A. Fetal arrhythmia diagnosis and pharmacologic management. J. Clin. Pharmacol. 2022, 62 (Suppl. S1), S53–S66. [Google Scholar] [CrossRef]
- Strasburger, J.F.; Cheulkar, B.; Wakai, R.T. Magnetocardiography for fetal arrhythmias. Heart Rhythm 2008, 5, 1073–1076. [Google Scholar] [CrossRef]
- Zhu, K.; Kiourti, A. A review of magnetic field emissions from the human body: Sources, sensors, and uses. IEEE Open J. Antennas Propag. 2022, 3, 732–744. [Google Scholar] [CrossRef]
- Tavarozzi, I.; Comani, S.; Del Gratta, C.; Romani, G.L.; Di Luzio, S.; Brisinda, D.; Gallina, S.; Zimarino, M.; Fenici, R.; De Caterina, R. Magnetocardiography: Current status and perspectives. Part I: Physical principles and instrumentation. Ital. Heart J. 2002, 3, 75–85. [Google Scholar]
- Körber, R.; Storm, J.H.; Seton, H.; Mäkelä, J.P.; Paetau, R.; Parkkonen, L.; Pfeiffer, C.; Riaz, B.; Schneiderman, J.F.; Dong, H.; et al. SQUIDs in biomagnetism: A roadmap towards improved healthcare. Supercond. Sci. Technol. 2016, 29, 113001. [Google Scholar] [CrossRef]
- Prinz, G.A. Magnetoelectronics applications. J. Magn. Magn. Mater. 1999, 200, 57–68. [Google Scholar] [CrossRef]
- Su, D.; Wu, K.; Saha, R.; Peng, C.; Wang, J.P. Advances in magnetoresistive biosensors. Micromachines 2019, 11, 34. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, J. Current progress of magnetoresistance sensors. Chemosensors 2021, 9, 211. [Google Scholar] [CrossRef]
- Lenssen, K.M.H.; Adelerhof, D.J.; Gassen, H.J.; Kuiper, A.E.T.; Somers, G.H.J.; Van Zon, J.B.A.D. Robust giant magnetoresistance sensors. Sens. Actuators A 2000, 85, 1–8. [Google Scholar] [CrossRef]
- Kuo, S.M.; Morgan, D.R. Active noise control: A tutorial review. Proc. IEEE 1999, 87, 943–975. [Google Scholar] [CrossRef]
- Dixit, S.; Nagaria, D. LMS adaptive filters for noise cancellation: A review. IJECE 2017, 7, 2520–2529. [Google Scholar] [CrossRef]
- Sekihara, K.; Nagarajan, S.S. Subspace-based interference removal methods for a multichannel biomagnetic sensor array. J. Neural Eng. 2017, 14, 051001. [Google Scholar] [CrossRef]
- Tan, A.W.C.; Rao, M.V.C.; Daya Sagar, B.S. A signal subspace approach for speech modelling and classification. Signal Process. 2007, 87, 500–508. [Google Scholar] [CrossRef]
- Hamada, S.; Sasaki, K.; Kito, H.; Tooyama, Y.; Ihara, K.; Aoyagi, E.; Ichimura, N.; Tohda, S.; Sasano, T. Effect of the recording condition on the quality of a single-lead electrocardiogram. Heart Vessel. 2022, 37, 1010–1026. [Google Scholar] [CrossRef]
- Fenici, R.; Brisinda, D.; Meloni, A.M. Clinical application of magnetocardiography. Expert Rev. Mol. Diagn. 2005, 5, 291–313. [Google Scholar] [CrossRef]
- Watanabe, S.; Yamada, S. Magnetocardiography in early detection of electromagnetic abnormality in ischemic heart disease. J. Arrhythm. 2008, 24, 4–17. [Google Scholar] [CrossRef]
- Claycomb, J.R.; Vajrala, V.; Nawarathna, D.; Miller, J.H. Impedance magnetocardiography: Experiments and modeling. J. Appl. Phys. 2004, 96, 7650–7654. [Google Scholar] [CrossRef]
- Faley, M.I.; Dammers, J.; Maslennikov, Y.V.; Schneiderman, J.F.; Winkler, D.; Koshelets, V.P.; Shah, N.J.; Dunin-Borkowski, R.E. High-TcSQUID biomagnetometers. Supercond. Sci. Technol. 2017, 30, 083001. [Google Scholar] [CrossRef]
- Swain, P.P.; Sengottuvel, S.; Patel, R.; Mani, A.; Gireesan, K. A feasibility study to measure magnetocardiography (MCG) in unshielded environment using first order gradiometer. Biomed. Signal Process. Control 2020, 55, 101664. [Google Scholar] [CrossRef]
- Iwata, G.Z.; Nguyen, C.T.; Tharratt, K.; Ruf, M.; Reinhardt, T.; Crivelli-Decker, J.; Liddy, M.S.Z.; Rugar, A.E.; Lu, F.; Aschbacher, K.; et al. Bedside magnetocardiography with a scalar sensor array. Sensors 2024, 24, 5402. [Google Scholar] [CrossRef]
- Yan, Y.; Lu, J.; Zhang, S.; Lu, F.; Yin, K.; Wang, K.; Zhou, B.; Liu, G. Three-axis closed-loop optically pumped magnetometer operated in the SERF regime. Opt. Express 2022, 30, 18300–18309. [Google Scholar] [CrossRef]
- Wu, T.; Xiao, W.; Peng, X.; Wu, T.; Guo, H. Compact high-bandwidth single-beam optically pumped magnetometer for biomagnetic measurement. Biomed. Opt. Express 2025, 16, 235–244. [Google Scholar] [CrossRef]
- Uchiyama, T.; Mohri, K.; Honkura, Y.; Panina, L.V. Recent advances of pico-tesla resolution magneto-impedance sensor based on amorphous wire CMOS IC MI sensor. IEEE Trans. Magn. 2012, 44, 3833–3839. [Google Scholar] [CrossRef]
- Harada, S.; Sasada, I.; Hang, F. Development of a one-dimensional fluxgate array and its application to magnetocardiogram measurements. Electron. Commun. Jpn. 2015, 98, 20–26. [Google Scholar] [CrossRef]
- Elfouly, T.; Alouani, A. Harnessing the Heart’s magnetic field for advanced diagnostic techniques. Sensors 2024, 24, 6017. [Google Scholar] [CrossRef]
- Shirai, Y.; Hirao, K.; Shibuya, T.; Okawa, S.; Hasegawa, Y.; Adachi, Y.; Sekihara, K.; Kawabata, S. Magnetocardiography using a magnetoresistive sensor array. Int. Heart J. 2019, 60, 50–54. [Google Scholar] [CrossRef]
- Boll, S.F.; Pulsipher, D.C. Suppression of acoustic noise in speech using two microphone adaptive noise cancellation. IEEE Trans. Acoust. Speech Signal Process. 1980, 28, 752–753. [Google Scholar] [CrossRef]
- Sehamby, R.; Singh, B. Noise Cancellation using Adaptive Filtering in ECG Signals: Application to Biotelemetry. Int. J. Bio-Sci. Bio-Technol. 2016, 8, 237–244. [Google Scholar] [CrossRef]
- Lakshmi, M.L.S.N.S.; Raj, M.; Tirupathi, R.; Krishna, G.; Michael, P.; Raj, P.; Gopi Krishna, P.; Bhavani, K.V.L. An insight into adaptive noise cancellation and comparison of algorithms. J. Theor. Appl. Inf. Technol. 2015, 79, 57–64. [Google Scholar]
- Her, A.Y.; Dischl, D.; Kim, Y.H.; Kim, S.W.; Shin, E.S. Magnetocardiography for the detection of myocardial ischemia. Front. Cardiovasc. Med. 2023, 10, 1242215. [Google Scholar] [CrossRef]
- Kwong, J.S.W.; Leithäuser, B.; Park, J.W.; Yu, C.M. Diagnostic value of magnetocardiography in coronary artery disease and cardiac arrhythmias: A review of clinical data. Int. J. Cardiol. 2013, 167, 1835–1842. [Google Scholar] [CrossRef]
- Mäkelä, T.; Pham, Q.C.; Clarysse, P.; Nenonen, J.; Lötjönen, J.; Sipilä, O.; Hänninen, H.; Lauerma, K.; Knuuti, J.; Katila, T.; et al. A 3-D model-based registration approach for the PET, MR and MCG cardiac data fusion. Med. Image Anal. 2003, 7, 377–389. [Google Scholar] [CrossRef]
- Bhat, V.R.; Pal, B.; Anitha, H.; Thalengala, A. Localization of magnetocardiographic sources for myocardial infarction cases using deterministic and Bayesian approaches. Sci. Rep. 2022, 12, 22079. [Google Scholar] [CrossRef]
- Bhat, V.R.; Anitha, H.; Gireesan, K. Construction of dynamic lead fields from vectorcardiography to solve the forward and the inverse problems in magnetocardiography. IRBM 2021, 42, 313–323. [Google Scholar] [CrossRef]
- Zhao, Q.; Geng, S.; Wang, B.; Sun, Y.; Nie, W.; Bai, B.; Yu, C.; Zhang, F.; Tang, G.; Zhang, D.; et al. Deep learning in heart sound analysis: From techniques to clinical applications. Health Data Sci. 2024, 4, 0182. [Google Scholar] [CrossRef]
Participants (n = 40) | |
---|---|
Age, years | 44.1 ± 10.5 |
Sex, n | |
Male | 34 |
Female | 6 |
Height, cm | 169.3 ± 7.4 |
Weight, kg | 62.1 ± 9.2 |
BMI, kg/m2 | 21.6 ± 2.7 |
Participant No. | Digital Filters (dB) | ANC (dB) | Bayesian SSP (dB) | ECG (dB) |
---|---|---|---|---|
#01 | 16.2 | 31.0 | 34.4 | 35.3 |
#02 | 13.1 | 28.8 | 37.0 | 43.8 |
#03 | 12.5 | 28.5 | 43.3 | 40.3 |
#04 | 8.2 | 26.6 | 38.9 | 53.3 |
#05 | 13.1 | 20.8 | 29.9 | 28.5 |
#06 | 13.3 | 25.8 | 34.6 | 32.4 |
#07 | 16.4 | 34.1 | 41.3 | 39.3 |
#08 | 9.9 | 22.8 | 36.1 | 40.2 |
#09 | 12.9 | 23.5 | 28.5 | 32.7 |
#10 | 12.1 | 26.2 | 32.9 | 26.5 |
#11 | 5.7 | 25.9 | 42.7 | 54.0 |
#12 | 11.1 | 22.5 | 35.1 | 28.6 |
#13 | 13.5 | 25.4 | 36.2 | 37.9 |
#14 | 12.6 | 26.6 | 30.2 | 35.1 |
#15 | 10.0 | 26.9 | 28.5 | 31.8 |
#16 | 12.4 | 27.3 | 44.3 | 41.7 |
#17 | 3.6 | 21.6 | 23.3 | 32.9 |
#18 | 6.0 | 26.6 | 35.4 | 42.5 |
#19 | 7.5 | 28.1 | 37.6 | 42.0 |
#20 | 2.4 | 18.7 | 30.9 | 29.1 |
#21 | 13.3 | 19.4 | 31.2 | 35.8 |
#22 | 5.7 | 20.5 | 27.2 | 46.3 |
#23 | 12.2 | 26.7 | 36.8 | 40.7 |
#24 | 5.7 | 18.3 | 28.4 | 40.8 |
#25 | 13.8 | 32.8 | 36.1 | 34.3 |
#26 | 10.9 | 31.0 | 39.0 | 31.5 |
#27 | 7.0 | 27.1 | 38.3 | 42.9 |
#28 | 11.8 | 33.5 | 35.5 | 36.6 |
#29 | 4.3 | 29.8 | 41.8 | 31.6 |
#30 | 8.1 | 24.6 | 31.2 | 37.6 |
#31 | 9.5 | 20.4 | 28.1 | 37.9 |
#32 | 7.2 | 23.7 | 32.1 | 26.5 |
#33 | 2.8 | 27.1 | 38.8 | 41.2 |
#34 | 6.6 | 27.5 | 37.6 | 46.6 |
#35 | 4.2 | 11.1 | 22.0 | 34.2 |
#36 | 11.4 | 28.0 | 41.4 | 39.4 |
#37 | 12.0 | 22.4 | 36.8 | 43.0 |
#38 | 13.2 | 32.1 | 37.7 | 38.3 |
#39 | 13.1 | 29.8 | 38.4 | 48.0 |
#40 | 7.0 | 33.7 | 36.8 | 35.7 |
Average | 9.8 ± 3.7 | 25.9 ± 4.8 | 35.0 ± 5.2 | 37.9 ± 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaga, L.; Amemiya, M.; Natsume, Y.; Shibuya, T.; Sasano, T. Recording of Cardiac Excitation Using a Novel Magnetocardiography System with Magnetoresistive Sensors Outside a Magnetic Shielded Room. Sensors 2025, 25, 4642. https://doi.org/10.3390/s25154642
Yaga L, Amemiya M, Natsume Y, Shibuya T, Sasano T. Recording of Cardiac Excitation Using a Novel Magnetocardiography System with Magnetoresistive Sensors Outside a Magnetic Shielded Room. Sensors. 2025; 25(15):4642. https://doi.org/10.3390/s25154642
Chicago/Turabian StyleYaga, Leo, Miki Amemiya, Yu Natsume, Tomohiko Shibuya, and Tetsuo Sasano. 2025. "Recording of Cardiac Excitation Using a Novel Magnetocardiography System with Magnetoresistive Sensors Outside a Magnetic Shielded Room" Sensors 25, no. 15: 4642. https://doi.org/10.3390/s25154642
APA StyleYaga, L., Amemiya, M., Natsume, Y., Shibuya, T., & Sasano, T. (2025). Recording of Cardiac Excitation Using a Novel Magnetocardiography System with Magnetoresistive Sensors Outside a Magnetic Shielded Room. Sensors, 25(15), 4642. https://doi.org/10.3390/s25154642