Surface-Enhanced Raman Spectroscopy for Adenine Detection in Five Selected Bacterial Strains Under Stress Conditions
Abstract
Highlights
- Adenine was detected as a stress marker in five bacterial strains.
- Stable Au and Ag NPs enabled SERS-based analysis of secreted bacterial metabolites.
- Label-free SERS detects metabolic stress responses in bacteria cost-effectively.
- Gold NPs enable long-term, reproducible Raman-based bacterial stress detection.
Abstract
1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Synthesis of Nanoparticles
2.3. Characterization of Nanoparticles
2.4. Microorganisms
2.5. Microbiology
2.6. Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy
2.7. Data Analysis
3. Results and Discussion
3.1. Properties of the Nanoparticles
3.2. Raman Spectroscopy
3.3. Surface-Enhanced Raman Spectroscopy for Detection of Adenine in Bacterial Cells
4. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATP | Adenosine Triphosphate |
DI | Deionized |
DLS | Dynamic Light Scattering |
ELISA | Enzyme-Linked Immunosorbent Assay |
LB | Luria–Bertani |
LTRS | Laser Tweezers Raman Spectroscopy |
MALDI-TOF MS | Matrix-Assisted Laser Desorption/Ionization–Time-of-Flight Mass Spectrometry |
NP | Nanoparticles |
PCR | Polymerase Chain Reaction |
POC | Point of Care |
RS | Raman Spectroscopy |
SERS | Surface-Enhanced Raman Spectroscopy |
STEM | Scanning Transmission Electron Microscopy |
References
- Lee, K.S.; Landry, Z.; Pereira, F.C.; Wagner, M.; Berry, D.; Huang, W.E.; Taylor, G.T.; Kneipp, J.; Popp, J.; Zhang, M.; et al. Raman microspectroscopy for microbiology. Nat. Rev. Methods Prim. 2021, 1, 80. [Google Scholar] [CrossRef]
- Madzharova, F.; Heiner, Z.; Gühlke, M.; Kneipp, J. Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil. J. Phys. Chem. C Nanomater Interfaces 2016, 120, 15415–15423. (In English) [Google Scholar] [CrossRef]
- Lin, L.L.; Alvarez-Puebla, R.; Liz-Marzán, L.M.; Trau, M.; Wang, J.; Fabris, L.; Wang, X.; Liu, G.; Xu, S.; Han, X.X.; et al. Surface-enhanced Raman spectroscopy for biomedical applications: Recent advances and future challenges. ACS Appl. Mater. Interfaces 2025, 17, 16287–16379. [Google Scholar] [CrossRef]
- Ježek, J.; Pilát, Z.; Bernatová, S.; Kirchhoff, J.; Tannert, A.; Neugebauer, U.; Samek, O.; Zemánek, P. Laser tweezers Raman spectroscopy of E. coli under antibiotic stress in microfluidic chips. In Proceedings of the 21st Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics, SPIE, Lednice, Czech Republic, 3–7 September 2018. [Google Scholar]
- Samek, O.; Bernatova, S.; Dohnal, F. The potential of SERS as an AST methodology in clinical settings. Nanophotonics 2021, 10, 20210095. [Google Scholar] [CrossRef]
- Wang, C.; Weng, G.; Li, J.; Zhu, J.; Zhao, J. A review of SERS coupled microfluidic platforms: From configurations to applications. Anal. Chim. Acta 2024, 1296, 342291. [Google Scholar] [CrossRef]
- Schlücker, S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem. Int. Ed. Engl. 2014, 53, 4756–4795. (In English) [Google Scholar] [CrossRef]
- Chen, X.; Tang, M.; Liu, Y.; Huang, J.; Liu, Z.; Tian, H.; Zheng, Y.; de la Chapelle, M.L.; Zhang, Y.; Fu, W. Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles. Mikrochim Acta 2019, 186, 102. (In English) [Google Scholar] [CrossRef]
- Efrima, S.; Zeiri, L. Understanding SERS of bacteria. J. Raman Spectrosc. 2008, 40, 277–288. [Google Scholar] [CrossRef]
- Paccotti, N.; Boschetto, F.; Horiguchi, S.; Marin, E.; Chiadò, A.; Novara, C.; Geobaldo, F.; Giorgis, F.; Pezzotti, G. Label-Free SERS Discrimination and In Situ Analysis of Life Cycle in Escherichia coli and Staphylococcus epidermidis. Biosensors 2018, 8, 131. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, D.; Ivleva, N.P.; Mircescu, N.E.; Niessner, R.; Haisch, C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal. Chem. 2014, 86, 1525–1533. (In English) [Google Scholar] [CrossRef]
- Burnstock, G.; Verkhratsky, A. Evolutionary origins of the purinergic signalling system. Acta Physiol. 2009, 195, 415–447. [Google Scholar] [CrossRef]
- Skaldin, M.; Tuittila, M.; Zavialov, A.V.; Zavialov, A.V.; Perna, N. Secreted Bacterial Adenosine Deaminase Is an Evolutionary Precursor of Adenosine Deaminase Growth Factor. Mol. Biol. Evol. 2018, 35, 2851–2861. [Google Scholar] [CrossRef]
- Onyemaobi, I.M.; Xie, Y.; Zhang, J.; Xu, L.; Xiang, L.; Lin, J.; Wu, A. Nanomaterials and clinical SERS technology: Broad applications in disease diagnosis. J. Mater. Chem. B 2025, 13, 2890–2911. [Google Scholar] [CrossRef]
- Premasiri, W.R.; Chen, Y.; Williamson, P.M.; Bandarage, D.C.; Pyles, C.; Ziegler, L.D. Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): Identification and antibiotic susceptibilities. Anal. Bioanal. Chem. 2017, 409, 3043–3054. (In English) [Google Scholar] [CrossRef]
- Yang, D.; Zhou, H.; Haisch, C.; Niessner, R.; Ying, Y. Reproducible E. coli detection based on label-free SERS and mapping. Talanta 2016, 146, 457–463. (In English) [Google Scholar] [CrossRef]
- Premasiri, W.R.; Gebregziabher, Y.; Ziegler, L.D. On the difference between surface-enhanced raman scattering (SERS) spectra of cell growth media and whole bacterial cells. Appl. Spectrosc. 2011, 65, 493–499. (In English) [Google Scholar] [CrossRef]
- Cheng, H.-W.; Tsai, H.-M.; Wang, Y.-L. Exploiting Purine as an Internal Standard for SERS Quantification of Purine Derivative Molecules Released by Bacteria. Anal. Chem. 2023, 95, 16967–16975. [Google Scholar] [CrossRef]
- Lee, P.C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391–3395. [Google Scholar] [CrossRef]
- Rebrosova, K.; Samek, O.; Kizovsky, M.; Bernatova, S.; Hola, V.; Ruzicka, F. Raman Spectroscopy—A Novel Method for Identification and Characterization of Microbes on a Single-Cell Level in Clinical Settings. Front. Cell. Infect. Microbiol. 2022, 12, 866463. (In English) [Google Scholar] [CrossRef]
- Brandt, N.N.; Brovko, O.O.; Chikishev, A.Y.; Paraschuk, O.D. Optimization of the rolling-circle filter for Raman background subtraction. Appl. Spectrosc. 2006, 60, 288–293. (In English) [Google Scholar] [CrossRef]
- Schafer, R.W. What Is a Savitzky-Golay Filter? [Lecture Notes]. IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Terán, M.; Ruiz, J.J.; Loza-Álvarez, P.; Masip, D.; Merino, D. Open Raman spectral library for biomolecule identification. Chemom. Intell. Lab. Syst. 2025, 264, 105476. [Google Scholar] [CrossRef]
- Vinod, M.; Gopchandran, K.G. Au, Ag and Au:Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates. Prog. Nat. Sci. 2014, 24, 569–578. [Google Scholar] [CrossRef]
- Graves, J.L., Jr.; Tajkarimi, M.; Cunningham, Q.; Campbell, A.; Nonga, H.; Harrison, S.H.; Barrick, J.E. Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front. Genet. 2015, 6, 42. (In English) [Google Scholar] [CrossRef]
- Zheng, Y.; Carey, P.R.; Palfey, B.A. Raman spectrum of fully reduced flavin. J. Raman Spectrosc. 2004, 35, 521–524. [Google Scholar] [CrossRef]
- Itoh, T.; Procházka, M.; Dong, Z.-C.; Ji, W.; Yamamoto, Y.S.; Zhang, Y.; Ozaki, Y. Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chem. Rev. 2023, 123, 1552–1634. (In English) [Google Scholar] [CrossRef]
- Bickerstaff-Westbrook, E.; Tukova, A.; Lyu, N.; Shen, C.; Rodger, A.; Wang, Y. Advancing SERS label-free detection of bacteria: Sensing in liquid vs drop-cast. Mater. Today Sustain. 2024, 27, 100912. [Google Scholar] [CrossRef]
- Percot, A.; Maurel, M.; Lambert, J.; Zins, E. New insights into the surface Enhanced Raman Scattering (SERS) response of adenine using chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 314, 124177. (In English) [Google Scholar] [CrossRef]
- Kubryk, P.; Niessner, R.; Ivleva, N.P. The origin of the band at around 730 cm−1 in the SERS spectra of bacteria: A stable isotope approach. Analyst 2016, 141, 2874–2878. [Google Scholar] [CrossRef]
- Link, H.; Fuhrer, T.; Gerosa, L.; Zamboni, N.; Sauer, U. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat. Methods 2015, 12, 1091–1097. (In English) [Google Scholar] [CrossRef]
- Vaculík, O.; Bernatová, S.; Rebrošová, K.; Samek, O.; Šilhan, L.; Růžička, F.; Šerý, M.; Šiler, M.; Ježek, J.; Zemánek, P. Rapid identification of pathogens in blood serum via Raman tweezers in combination with advanced processing methods. Biomed. Opt. Express 2023, 14, 6410–6421. (In English) [Google Scholar] [CrossRef]
- Liu, W.; Wei, L.; Wang, D.; Zhu, C.; Huang, Y.; Gong, Z.; Tang, C.; Fan, M. Phenotyping Bacteria through a Black-Box Approach: Amplifying Surface-Enhanced Raman Spectroscopy Spectral Differences among Bacteria by Inputting Appropriate Environmental Stress. Anal. Chem. 2022, 94, 6791–6798. (In English) [Google Scholar] [CrossRef]
- Dina, N.E.; Tahir, M.A.; Bajwa, S.Z.; Amin, I.; Valev, V.K.; Zhang, L. SERS-based antibiotic susceptibility testing: Towards point-of-care clinical diagnosis. Biosens. Bioelectron. 2023, 219, 114843. [Google Scholar] [CrossRef]
- Raman Base: Open Online Database of Raman Spectra. Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic. Available online: https://ramanbase.org (accessed on 20 July 2025).
S. aureus | E. coli | ||
---|---|---|---|
Raman Shift (cm−1) | Tentative Assignment | Raman Shift (cm−1) | Tentative Assignment |
779 | Cytosine, uracil | 855 | Tyrosine |
1002 | Phenylalanine | 1002 | Phenylalanine |
1030 | Phenylalanine, protein side chains | 1030 | Phenylalanine, protein side chains |
1125 | Lipids | 1125 | Lipids |
1205 | Phenylalanine, tyrosine, tryptophane | 1205 | Phenylalanine, tyrosine, tryptophane |
1338 | Protein side chains | 1338 | Protein side chains |
1449 | Protein side chains, lipids | 1449 | Protein side chains, lipids |
1666 | Lipids | 1666 | Lipids |
Bacterial Strain | Adenine Detectability | |||
---|---|---|---|---|
Raman | SERS Ag-NPs | SERS Au-NPs | ||
OSMOTIC STRESS | E. coli | ✗ | ✔ | ✔ |
S. aureus | ✗ | ✔ | ✔ | |
S. lugdunensis | ✗ | ✔ | ✔ | |
S. epidermis | ✗ | ✔ | ✔ | |
E. faecalis | ✗ | ✔ | ✔ | |
PHYSIOLOGICAL “UNSTRESSED” CONDITIONS | E. coli | ✗ | ✗ | ✗ |
S. aureus | ✗ | ✔ | ✗ | |
S. lugdunensis | ✗ | ✔ | ✗ | |
S. epidermis | ✗ | ✔ | ✗ | |
E. faecalis | ✗ | ✔ | ✗ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghazalová, M.; Modlitbová, P.; Samek, O.; Rebrošová, K.; Šiler, M.; Ježek, J.; Pilát, Z. Surface-Enhanced Raman Spectroscopy for Adenine Detection in Five Selected Bacterial Strains Under Stress Conditions. Sensors 2025, 25, 4629. https://doi.org/10.3390/s25154629
Ghazalová M, Modlitbová P, Samek O, Rebrošová K, Šiler M, Ježek J, Pilát Z. Surface-Enhanced Raman Spectroscopy for Adenine Detection in Five Selected Bacterial Strains Under Stress Conditions. Sensors. 2025; 25(15):4629. https://doi.org/10.3390/s25154629
Chicago/Turabian StyleGhazalová, Mona, Pavlína Modlitbová, Ota Samek, Katarína Rebrošová, Martin Šiler, Jan Ježek, and Zdeněk Pilát. 2025. "Surface-Enhanced Raman Spectroscopy for Adenine Detection in Five Selected Bacterial Strains Under Stress Conditions" Sensors 25, no. 15: 4629. https://doi.org/10.3390/s25154629
APA StyleGhazalová, M., Modlitbová, P., Samek, O., Rebrošová, K., Šiler, M., Ježek, J., & Pilát, Z. (2025). Surface-Enhanced Raman Spectroscopy for Adenine Detection in Five Selected Bacterial Strains Under Stress Conditions. Sensors, 25(15), 4629. https://doi.org/10.3390/s25154629