Metric Error Assessment Regarding Geometric 3D Reconstruction of Transparent Surfaces via SfM Enhanced by 2D and 3D Gaussian Splatting
Abstract
1. Introduction
- SfM, photogrammetric approach
- 3DGS (tridimensional Gaussian splatting)
- 2DGS (bidimensional Gaussian splatting)
2. State of Art
2.1. Optimizations from the Original Paper of 3DGS
2.1.1. Surface Mesh Extraction
2.1.2. New Enhancement and Optimization of Transparent Object Reconstruction
2.2. Metrics
2.2.1. Rendering Metrics
2.2.2. Geometric Metrics in 3D Surveying
3. Materials
4. Methodology
4.1. Common Input and Initial Phase
4.2. Parallel Reconstruction Processes
4.2.1. SfM Agisoft Metashape (AM) v.2.0.0
4.2.2. 3D Gaussian Splatting (3DGS) Latest Code Update on August 2024 + SuGaR Latest Code Update on September 2024
- python train.py -s data/bottle2025mask -r 2 --iterations 30,000 [3DGS]
- python train.py -s data\bottle2025mask -c gaussian_splatting\output\bottle2025mask\ -r dn_consistency --refinement_time long --high_poly True -i 30,000 [SuGaR]
4.2.3. 2D Gaussian Splatting (2DGS) Latest Code Update on December 2024
- Depth distortion: Corrects errors in the perceived depth between objects.
- Normal consistency: Ensures consistency in surface normals (the direction of surface planes) to maintain coherent surface representation across views.
- python train.py -s data/bottle2025mask -r 2 -iterations 30,000 [2DGS]
- python render.py -m output\bottle2025mask -s data\bottle2025mask [2DGS]
4.3. Comparative Analysis
5. Results and Comparative Analysis
5.1. Qualitative Analysis
5.2. Quantitative Analysis
5.2.1. Completeness Evaluation of Reconstructed Models
- is the total surface area of the reconstructed model after out-of-range points removal.
- is the surface area of the ground truth mesh.
5.2.2. Completeness Evaluation of Reconstructed Models on Slice Sections
5.3. Rendering Metrics PSNR LLPIS and SSIM for 3DGS and 2DGS
5.4. Processing Times
CPU and GPU Usage
6. Discussion
6.1. Comparative Performance Analysis
6.2. Key Findings and Implications
Out-of-Range Points Distribution and Robustness
7. Conclusions, Limitations and Future Works
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SfM | Structure from Motion |
MVS | Multi View Stereo |
3DGS | 3D Gaussian Splatting |
2DGS | 2D Gaussian Splatting |
CH | Cultural Heritage |
AI | Artificial Intelligence |
CV | Computer Vision |
NeRF | Neural Radiance Field |
MLP | Multi-Layer Perceptron |
CNN | Convolutional Neural Network |
LPIPS | Learned Perceptual Image Patch Similarity |
PSNR | Peak Signal-to-Noise Ratio |
SSIM | Structural Similarity Index Measure |
SuGaR | Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering |
GS2Mesh | Gaussian Splatting-to-Mesh |
GOF | Gaussian Opacity Fields |
MVG-Splatting | Multi-View Guided Gaussian Splatting |
AM | Agisoft Metashape |
RMSE | Root Mean Square Error |
GPU | Graphics Processing Unit |
CPU | Central Processing Unit |
References
- Moyano, J.; Nieto-Julián, J.E.; Bienvenido-Huertas, D.; Marín-García, D. Validation of Close-Range Photogrammetry for Architectural and Archaeological Heritage: Analysis of Point Density and 3D Mesh Geometry. Remote Sens. 2020, 12, 3571. [Google Scholar] [CrossRef]
- Rea, P.; Pelliccio, A.; Ottaviano, E.; Saccucci, M. The Heritage Management and Preservation Using the Mechatronic Survey. Int. J. Archit. Herit. 2017, 11, 1121–1132. [Google Scholar] [CrossRef]
- Karami, A.; Battisti, R.; Menna, F.; Remondino, F. 3D Digitization of Transparent and Glass Surfaces: State of the Art and Analysis of Some Methods. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 43, 695–702. [Google Scholar] [CrossRef]
- Morelli, L.; Karami, A.; Menna, F.; Remondino, F. Orientation of Images with Low Contrast Textures and Transparent Objects. Remote Sens. 2022, 14, 6345. [Google Scholar] [CrossRef]
- Fried, P.; Woodward, J.; Brown, D.; Harvell, D.; Hanken, J. 3D Scanning of Antique Glass by Combining Photography and Computed Tomography. Digit. Appl. Archaeol. Cult. Herit. 2020, 18, e00147. [Google Scholar] [CrossRef]
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. arXiv 2020, arXiv:2003.08934. [Google Scholar] [CrossRef]
- Kerbl, B.; Kopanas, G.; Leimkühler, T.; Drettakis, G. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. arXiv 2023, arXiv:2308.04079. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 586–595. [Google Scholar]
- Nocerino, E.; Stathopoulou, E.K.; Rigon, S.; Remondino, F. Surface Reconstruction Assessment in Photogrammetric Applications. Sensors 2020, 20, 5863. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Rashidi, M.; Mousavi, V.; Karami, A.; Yu, Y.; Samali, B. Quality Evaluation of Digital Twins Generated Based on UAV Photogrammetry and TLS: Bridge Case Study. Remote Sens. 2021, 13, 3499. [Google Scholar] [CrossRef]
- Fiorucci, M.; Khoroshiltseva, M.; Pontil, M.; Traviglia, A.; Del Bue, A.; James, S. Machine Learning for Cultural Heritage: A Survey. Pattern Recognit. Lett. 2020, 133, 102–108. [Google Scholar] [CrossRef]
- Croce, V.; Caroti, G.; Piemonte, A.; De Luca, L.; Véron, P. H-BIM and Artificial Intelligence: Classification of Architectural Heritage for Semi-Automatic Scan-to-BIM Reconstruction. Sensors 2023, 23, 2497. [Google Scholar] [CrossRef] [PubMed]
- Condorelli, F.; Rinaudo, F. Cultural Heritage Reconstruction from Historical Photographs and Videos. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 259–265. [Google Scholar] [CrossRef]
- Barron, J.T.; Mildenhall, B.; Verbin, D.; Srinivasan, P.P.; Hedman, P. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 5470–5479. [Google Scholar]
- Croce, V.; Billi, D.; Caroti, G.; Piemonte, A.; De Luca, L.; Véron, P. Comparative Assessment of Neural Radiance Fields and Photogrammetry in Digital Heritage: Impact of Varying Image Conditions on 3D Reconstruction. Remote Sens. 2024, 16, 301. [Google Scholar] [CrossRef]
- Guédon, A.; Lepetit, V. SuGaR: Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering. arXiv 2023, arXiv:2311.12775. [Google Scholar]
- Wolf, Y.; Bracha, A.; Kimmel, R. Surface Reconstruction from Gaussian Splatting via Novel Stereo Views. arXiv 2024, arXiv:2404.01810. [Google Scholar]
- Yu, Z.; Sattler, T.; Geiger, A. Gaussian Opacity Fields: Efficient High-Quality Compact Surface Reconstruction in Unbounded Scenes. arXiv 2024, arXiv:2404.10772. [Google Scholar]
- Huang, B.; Yu, Z.; Chen, A.; Geiger, A.; Gao, S. 2D Gaussian Splatting for Geometrically Accurate Radiance Fields. In Proceedings of the SIGGRAPH 24 Conference Papers, Denver, CO, USA, 28 July–1 August 2024; pp. 1–11. [Google Scholar] [CrossRef]
- Li, Z.; Yao, S.; Chu, Y.; García-Fernández, Á.F.; Yue, Y.; Lim, E.G.; Zhu, X. MVG-Splatting: Multi-View Guided Gaussian Splatting with Adaptive Quantile-Based Geometric Consistency Densification. arXiv 2024, arXiv:2407.11840. [Google Scholar]
- Yao, Y.; Luo, Z.; Li, S.; Fang, T.; Quan, L. MVSNet: Depth Inference for Unstructured Multi-View Stereo. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 767–783. [Google Scholar]
- Cheng, K.; Long, X.; Yang, K.; Yao, Y.; Yin, W.; Ma, Y.; Wang, W.; Chen, X. GaussianPro: 3D Gaussian Splatting with Progressive Propagation. In Proceedings of the Forty-first International Conference on Machine Learning, Vienna, Austria, 21–27 July 2024. [Google Scholar]
- Liu, T.; Wang, G.; Hu, S.; Shen, L.; Ye, X.; Zang, Y.; Cao, Z.; Li, W.; Liu, Z. Fast Generalizable Gaussian Splatting Reconstruction from Multi-View Stereo. arXiv 2024, arXiv:2405.12218. [Google Scholar]
- Chen, Y.; Xu, H.; Zheng, C.; Zhuang, B.; Pollefeys, M.; Geiger, A.; Cham, T.-J.; Cai, J. MVSplat: Efficient 3D Gaussian Splatting from Sparse Multi-View Images. arXiv 2024, arXiv:2403.14627. [Google Scholar]
- Lorensen, W.E.; Cline, H.E. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. In Seminal Graphics: Pioneering Efforts That Shaped the Field; ACM: New York, NY, USA, 1998; pp. 347–353. [Google Scholar]
- Tobiasz, R.; Wilczyński, G.; Mazur, M.; Tadeja, S.; Spurek, P. MeshSplats: Mesh-Based Rendering with Gaussian Splatting Initialization. arXiv 2025, arXiv:2502.07754. [Google Scholar]
- Li, M.; Pang, P.; Fan, H.; Huang, H.; Yang, Y. TSGS: Improving Gaussian Splatting for Transparent Surface Reconstruction via Normal and De-lighting Priors. arXiv 2025, arXiv:2504.12799. [Google Scholar]
- Kim, J.; Noh, J.; Lee, D.-G.; Kim, A. TranSplat: Surface Embedding-guided 3D Gaussian Splatting for Transparent Object Manipulation. arXiv 2025, arXiv:2502.07840. [Google Scholar]
- Cao, J.; Cui, J.; Schwertfeger, S. GlassGaussian: Extending 3D Gaussian Splatting for Realistic Imperfections and Glass Materials. IEEE Access 2025, 13, 31517–31531. [Google Scholar] [CrossRef]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and <0.5MB Model Size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Remondino, F.; Menna, F. Image-based surface measurement for close-range heritage documentation. ISPRS J. Photogramm. Remote Sens. 2008, 63, 65–83. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef]
- Luhmann, T.; Fraser, C.; Maas, H.-G. Sensor modelling and camera calibration for close-range photogrammetry. ISPRS J. Photogramm. Remote Sens. 2016, 115, 37–46. [Google Scholar] [CrossRef]
- Wenzel, K.; Rothermel, M.; Fritsch, D.; Haala, N. Image acquisition and model selection for multi-view stereo. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 251–258. [Google Scholar] [CrossRef]
- Pieraccini, M.; Guidi, G.; Atzeni, C. 3D digitizing of cultural heritage. J. Cult. Herit. 2001, 2, 63–70. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Assessment of photogrammetric mapping accuracy based on variation ground control points number using UAV imagery. Measurement 2017, 98, 221–227. [Google Scholar] [CrossRef]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Remondino, F.; Nocerino, E.; Toschi, I.; Menna, F. A Critical Review of Automated Photogrammetric Processing of Large Datasets. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 591–599. [Google Scholar] [CrossRef]
- Luhmann, T. Close Range Photogrammetry: Principles, Techniques and Applications; Walter de Gruyter GmbH & Co. KG: Berlin, Germany, 2010; ISBN 978-3-11-019995-3. [Google Scholar]
- Billi, D.; Croce, V.; Bevilacqua, M.G.; Caroti, G.; Pasqualetti, A.; Piemonte, A.; Russo, M. Machine Learning and Deep Learning for the Built Heritage Analysis: Laser Scanning and UAV-Based Surveying Applications on a Complex Spatial Grid Structure. Remote Sens. 2023, 15, 1961. [Google Scholar] [CrossRef]
- Ungermann, P.; Ettenhofer, A.; Nießner, M.; Roessle, B. Robust 3D Gaussian Splatting for Novel View Synthesis in Presence of Distractors. arXiv 2024, arXiv:2408.11697. [Google Scholar]
- Morelli, L.; Ioli, F.; Maiwald, F.; Mazzacca, G.; Menna, F.; Remondino, F. Deep-image-matching: A toolbox for multiview image matching of complex scenarios. ISPRS Arch. 2024, 48, 309–316. [Google Scholar] [CrossRef]
Camera’s Characteristics | |||
---|---|---|---|
Name | Image dimension | Focal lenght | Sensor dimensions |
Nikon D750 | 6016 × 4016 pixels | 50 mm | W = 36.0 mm H = 23.9 mm |
Common Settings of Image Acquisition | |||
Aperture | Shutter speed range (Aperture priority mode) | ISO | Format |
f/16 | 1/8–1/10 | 200 | RAW |
Accuracy | Limit Key Points | Limit Tie Points | Generic Preselection | Reference Preselection | Adaptive Camera Model Fitting | Exclude Stationary Tie Points | Guided Image Matching |
---|---|---|---|---|---|---|---|
High | 0 | 0 | No | No | No | Yes | No |
Source Data | Surface Type | Quality | Face Count | Interpolation | Depth Filtering |
---|---|---|---|---|---|
Depth Maps | Arbitrary | High | High | Enabled | Mild |
Processes | Mean | St. Deviation | RMSE | Points in Range | Points out of Range |
---|---|---|---|---|---|
Agisoft Metashape | −0.0014 | 0.0008 | 0.00161 | 2,889,373 | 7,110,741 |
3DGS + SUGAR | −0.0006 | 0.0011 | 0.00125 | 3,894,545 | 6,105,469 |
2DGS | −0.0011 | 0.0005 | 0.00121 | 6,870,297 | 3,129,632 |
Model | Completeness | Triangles (Original) | Triangles (After Out-of-Range Removal) | Surface Area (m2) | Border Edges | Perimeter (m) |
---|---|---|---|---|---|---|
Ground Truth | - | 255,971 | - | 0.080029 | 425 | 0.370151 |
Agisoft Metashape | 16.96% | 188,267 | 76,137 | 0.013567 | 4289 | 3.158630 |
3DGS + SUGAR | 99.62% | 69,979 | 33,096 | 0.079725 | 5146 | 12.443651 |
2DGS | 96.43% | 206,201 | 141,498 | 0.077172 | 642 | 0.722261 |
Method | SSIM | PSNR | LPIPS | Visual Fidelity | Mesh Accuracy |
---|---|---|---|---|---|
3DGS | 0.9768 | 36.06 | 0.0629 | Higher (more realistic) | Low degree of conformity |
2DGS | 0.9734 | 34.91 | 0.0696 | Good, slightly worse | High degree of conformity |
Software/Process | CPU Usage | GPU Usage | Notes |
---|---|---|---|
Agisoft Metashape | Yes | Yes | CPU used for feature matching, mesh generation, and texturing. GPU accelerates depth maps, point cloud, and rendering. |
3DGS + SUGAR | No | Yes | Intensive GPU computation for 3D Gaussian management. CPU marginally used for coordination. |
2DGS | No | Yes | Uses GPU for rasterization and Gaussian optimization. CPU involved only in data management. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Billi, D.; Caroti, G.; Piemonte, A. Metric Error Assessment Regarding Geometric 3D Reconstruction of Transparent Surfaces via SfM Enhanced by 2D and 3D Gaussian Splatting. Sensors 2025, 25, 4410. https://doi.org/10.3390/s25144410
Billi D, Caroti G, Piemonte A. Metric Error Assessment Regarding Geometric 3D Reconstruction of Transparent Surfaces via SfM Enhanced by 2D and 3D Gaussian Splatting. Sensors. 2025; 25(14):4410. https://doi.org/10.3390/s25144410
Chicago/Turabian StyleBilli, Dario, Gabriella Caroti, and Andrea Piemonte. 2025. "Metric Error Assessment Regarding Geometric 3D Reconstruction of Transparent Surfaces via SfM Enhanced by 2D and 3D Gaussian Splatting" Sensors 25, no. 14: 4410. https://doi.org/10.3390/s25144410
APA StyleBilli, D., Caroti, G., & Piemonte, A. (2025). Metric Error Assessment Regarding Geometric 3D Reconstruction of Transparent Surfaces via SfM Enhanced by 2D and 3D Gaussian Splatting. Sensors, 25(14), 4410. https://doi.org/10.3390/s25144410