Impact of Hydrogen-Enriched Natural Gas on the Accuracy of Odorant Measurements
Abstract
1. Introduction
- -
- Are existing odorant measurement technologies and devices reliable with hydrogen-enriched gas mixtures?
- -
- Does hydrogen blending could cause inaccurate readings due to altered gas matrix or interference with sensors?
2. Methods
2.1. Tests on Methane/Hydrogen Blends in Certified Cylinders
2.2. Tests on Natural Gas from the Gas Grid with Hydrogen Injection
2.3. Calculations
2.4. Uncertainty Estimation
- -
- The standard uncertainty of the reference value () obtained from the certificate of the cylinder used;
- -
- The standard uncertainty of the GC, = accuracy/, considering that the GC used conforms class 0.5;
- -
- The standard uncertainty of the GC calibration, = 0.15 mg/Sm3 as per calibration certificate;
- -
- The repeatability uncertainty () equal to the standard deviation of the repeated measurements performed (>10 measurements).
3. Results and Discussion
3.1. Methane/Hydrogen Blends in Certified Cylinders
3.2. Natural Gas from the Gas Grid and Hydrogen Blends
4. Conclusions
- -
- the overestimation of 2.3% and 1.2% for THT, respectively, at medium and high concentrations occurs with CH4- H2 blend at a 20% vol of hydrogen, whereas no issues have been found for TBM (at all investigated concentrations) and THT at low concentration;
- -
- errors generally within 0.6% were found for 100% hydrogen; however, such errors were all positive except for TBM at low concentration (i.e., = −3.4%).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MA | methyl acrylate |
EA | ethyl acrylate |
DSO | Distribution System Operator |
THT | tetrahydrothiophene |
TBM | tert-butilmercaptano |
CGS | City Gate Station |
HCV | Higher Calorific Value |
GC | gas chromatography |
PT | proficiency test |
NG-H2 | natural gas and hydrogen mixture |
error, mg/Sm3 | |
relative error, % | |
normalized error | |
GC indication, mg/Sm3 | |
reference concentration value of the certified cylinder, mg/Sm3 | |
uncertainty of the reference value, mg/Sm3 | |
uncertainty of the GC, % | |
uncertainty of the GC calibration, mg/Sm3 | |
repeatability uncertainty, mg/Sm3 | |
measured odorant concentration, mg/Sm3 | |
reference odorant concentration, mg/Sm3 | |
expanded uncertainty of the measured odorant concentration, mg/Sm3 | |
expanded uncertainty of the reference odorant concentration, mg/Sm3 | |
retention time, min |
References
- Kotagodahetti, R.; Hewage, K.; Perera, P.; Sadiq, R. Technology and policy options for decarbonizing the natural gas industry: A critical review. Gas Sci. Eng. 2023, 114, 204981. [Google Scholar] [CrossRef]
- Cappello, V.; Sun, P.; Elgowainy, A. Blending low-carbon hydrogen with natural gas: Impact on energy and life cycle emissions in natural gas pipelines. Gas Sci. Eng. 2024, 128, 205389. [Google Scholar] [CrossRef]
- Arpino, F.; Canale, C.; Cortellessa, G.; Dell’Isola, M.; Ficco, G.; Grossi, G.; Moretti, L. Green hydrogen for energy storage and natural gas system decarbonization: An Italian case study. Int. J. Hydrogen Energy 2024, 49, 586–600. [Google Scholar] [CrossRef]
- Nazanin, R.N.A.F.; Bruno, C.; Nuno, M.; Adelio, G.; Manuel, G. Advances in hydrogen blending and injection in natural gas networks: A review. Int. J. Hydrogen Energy 2025, 105, 367–381. [Google Scholar] [CrossRef]
- Aminul, I.; Tahrim, A.; Nathan, S.; Kara, E.; David, B.; Manuel, H. Hydrogen blending in natural gas pipelines: A comprehensive review of material compatibility and safety considerations. Int. J. Hydrogen Energy 2024, 93, 1429–1461. [Google Scholar] [CrossRef]
- Marcogaz. Odorisation of Natural Gas and Hydrogen Mixtures, December 2023. Available online: https://www.marcogaz.org/wp-content/uploads/2023/12/Item-VI.1.-natural-gas-odorisation-practices-in-europe.pdf (accessed on 24 June 2024).
- Pradheep, K.; Brian, B.; Vincent, S.; Christopher, C.; Devinder, M. Evaluation of Hydrogen Blend Stability in Low-Pressure Gas Distribution. Hydrogen 2023, 4, 210–225. [Google Scholar] [CrossRef]
- Navroop, S.; Lumen, G.; Simon, P.; Ron, H.; Jacqueline, F. Hydrogen and odorized methane blends under variable Reynolds number conditions with and without leaks. Int. J. Hydrogen Energy 2024, 94, 1288–1297. [Google Scholar] [CrossRef]
- CSA Z662:23; Oil and Gas Pipeline Systems. Canadian Standards Association (CSA): Toronto, ON, Canada, 2023.
- DVGW G 280 (A); Technical Rule—Standard. Odorization of Gases. DVGW: Bonn, Germany, 2018.
- Code of Federal Regulations AE 2.106/3:49/Title 49—Transportation, Part 192—Transportation of Natural and Other Gas by Pipeline: Minimum Federal Safety Standards. Available online: https://www.ecfr.gov/current/title-49/subtitle-B/chapter-I/subchapter-D/part-192?toc=1 (accessed on 9 July 2025).
- UNI 7133-2:2023; Odorizzazione di Gas per Uso Domestico e Similare—Parte 2: Requisiti, Controllo e Gestione. UNI–Ente Nazionale Italiano di Unificazione: Rome, Italy, 2023. (In Italian)
- Deymi-Dashtebayaz, M.; Abadi, R.N.B.; Dehkordi, M.M.; Amini, Z. Experimental and numerical investigation of odorant dispersion in natural-gas pipelines. Eur. Phys. J. Plus 2019, 134, 294. [Google Scholar] [CrossRef]
- Attachment 11A, SNAM Network Code. Available online: https://www.snam.it/en/our-businesses/transportation/network-code-tariffs-committee-area-and-consultations/network-code.html (accessed on 9 July 2025).
- DECRETO 3 giugno 2022, Ministero della Transizione Ecologica, Aggiornamento al decreto del Ministro dello Sviluppo Economico 18maggio 2018, recante: «Regola tecnica sulle caratteristiche chimico fisiche e sulla presenza di altri componenti nel gas combustibile» (GU n.139 del 16-6-2022). (In Italian) Available online: https://www.gazzettaufficiale.it/eli/id/2022/06/16/22A03534/sg (accessed on 9 July 2025).
- SNAM Network Code. Available online: https://www.snam.it/en/our-businesses/transportation/network-code-tariffs-committee-area-and-consultations/network-code.html (accessed on 6 December 2023).
- Murugan, A.; Bartlett, S.; Hesketh, J.; Becker, H.; Hinds, G. “Hydrogen Odorant and Leak Detection, Part 1—Hydrogen Odorant” 2020. Available online: https://sgn.co.uk/sites/default/files/media-entities/documents/2020-09/Hydrogen_Odorant_and_Leak_Detection_Project_Closure_Report_SGN.pdf (accessed on 9 July 2025).
- Services, G.T.; Nederland, N. Odor Assessment of Selected Odorants in Hydrogen and Natural Gas- Hydrogen Mixtures, 2020. Available online: https://www.netbeheernederland.nl/sites/default/files/page_files/Waterstof_56_410b983c4d.pdf (accessed on 24 June 2024).
- Dave Lander Consulting Limited. Technical Report for Functional Specification for Hydrogen Blending Infrastructure Project: Odorisation; Dave Lander Consulting Limited: Tamworth, UK, 2023. [Google Scholar]
- Mouli-Castillo, J.; Bartlett, S.; Murugan, A.; Badham, P.; Wrynne, A.; Haszeldine, S.; Wheeldon, M.; McIntosh, A. Olfactory appraisal of odorants for 100% hydrogen networks. Int. J. Hydrogen Energy 2020, 45, 11875–11884. [Google Scholar] [CrossRef]
- Huszal, A.; Jaworski, J. Studies of the Impact of Hydrogen on the Stability of Gaseous Mixtures of THT. Energies 2020, 13, 6441. [Google Scholar] [CrossRef]
- Huszal, A.; Jaworski, J. Studies on the Impact of Hydrogen on the Results of THT Measurement Devices. Energies 2022, 15, 221. [Google Scholar] [CrossRef]
- RR1047 Research Report. Injecting Hydrogen into the Gas Network: A Literature Search. Available online: https://webarchive.nationalarchives.gov.uk/ukgwa/20241207104020/https://www.hse.gov.uk/research/rrhtm/rr1047.htm (accessed on 9 July 2025).
- Mouli-Castillo, J.; Orr, G.; Thomas, J.; Hardy, N.; Crowther, M.; Haszeldine, R.S.; Wheeldon, M.; McIntosh, A. A comparative study of odorants for gas escape detection of natural gas and hydrogen. Int. J. Hydrogen Energy 2021, 46, 14881–14893. [Google Scholar] [CrossRef]
- UNI 9463-2:2022; Impianti di Odorizzazione e Depositi di Odorizzanti per Gas Combustibili—Parte 2: Impianti di Odorizzazione—Progettazione, Costruzione, Collaudo e Sorveglianza. UNI–Ente Nazionale Italiano di Unificazione: Rome, Italy, 2022. (In Italian)
- UNI 7133-3:2023; Odorizzazione di Gas per Uso Domestico e Similare—Parte 3: Procedure per la Definizione delle Caratteristiche Olfattive di Fluidi Odorosi. UNI–Ente Nazionale Italiano di Unificazione: Rome, Italy, 2023.
- Hawko, C.; Verriele, M.; Hucher, N.; Crunaire, S.; Leger, C.; Locoge, N.; Savary, G. A review of environmental odor quantification and qualification methods: The question of objectivity in sensory analysis. Sci. Total Environ. 2021, 795, 148862. [Google Scholar] [CrossRef] [PubMed]
- Byliński, H.; Kolasińska, P.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Determination of odour concentration by TD-GC×GC–TOF-MS and field olfactometry techniques. Monatshefte Für Chem. Chem. Mon. 2017, 148, 1651–1659. [Google Scholar] [CrossRef] [PubMed]
- EN ISO 19739:2005; Natural gas—Determination of Sulfur Compounds Using Gas Chromatography. ISO Standard: Geneva, Switzerland, 2005.
- Galassi, R.; Contini, C.; Pucci, M.; Gambi, E.; Manca, G. Odorant Monitoring in Natural Gas Pipelines Using Ultraviolet–Visible Spectroscopy. Appl. Spectrosc. 2021, 75, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Kireev, S.V.; Shnyrev, S.L. On-line monitoring of odorant in natural gas mixtures of different composition by the infrared absorption spectroscopy method. Laser Phys. Lett. 2018, 15, 035705. [Google Scholar] [CrossRef]
- Available online: https://www.goliah.info/spectra-unichim/ (accessed on 5 June 2024).
- Dell’Isola, M.; Ficco, G.; Moretti, L.; Jaworski, J.; Kułaga, P.; Kukulska–Zając, E. Impact of Hydrogen Injection on Natural Gas Measurement. Energies 2021, 14, 8461. [Google Scholar] [CrossRef]
- Mathurkar, H. “Minimum Ignition Energy and Ignition Probability for Methane, Hydrogen and Their Mixtures”. 2015. Available online: https://hdl.handle.net/2134/19907 (accessed on 24 June 2024).
- Wu, L.; Qiao, L.; Fan, J.; Wen, J.; Zhang, Y. Jar, Investigation on natural gas leakage and diffusion characteristics based on CFD. Gas Sci. Eng. 2024, 123, 205238. [Google Scholar] [CrossRef]
- Ilyushin, Y.; Nosova, V.; Krauze, A. Application of Systems Analysis Methods to Construct a Virtual Model of the Field. Energies 2025, 18, 1012. [Google Scholar] [CrossRef]
- Kukharova, T.; Maltsev, P.; Novozhilov, I. Development of a Control System for Pressure Distribution During Gas Production in a Structurally Complex Field. Appl. Syst. Innov. 2025, 8, 51. [Google Scholar] [CrossRef]
- Pietro Fiorentini’s Hydrogen Innovation Lab. Available online: https://www.fiorentini.com/en/about-us/expertise/hydrogen/pietro-fiorentinis-hydrogen-innovation-lab/ (accessed on 30 December 2024).
- EN ISO/IEC 17043:2023; Conformity Assessment—General Requirements for the Competence of Proficiency Testing Providers (ISO/IEC 17043:2023). ISO Standard: Geneva, Switzerland, 2023.
Odorant | Mol. Weight | THT + EA | THT + TBM | THT | TBM + IPM + NPM |
---|---|---|---|---|---|
THT (C4H8S) | 88.2 | 12% | 70% | 100% | |
EA (C5H8O2) | 100.1 | 88% | |||
TBM (C4H10S) | 90.2 | 30% | 76% | ||
IPM (C3H8S) | 76.2 | 16% | |||
NPM (C3H8S) | 76.2 | 8% | |||
Density at 273 K (kg m−3) | 950 | 1016 | 825 | ||
Density at 288 K (kg m−3) | 910 | 893 | 1003 | 810 | |
Vapor pressure at 273 K (mbar) | 11 | 5.8 | 82 | ||
Vapor pressure at 288 K (mbar) | 27 | 84 | 13 | 170 | |
% S | 4.4 | 36.1 | 36.4 | 37.1 |
Property | Unit | Methane, CH4 | Hydrogen, H2 |
---|---|---|---|
Wobbe Index | MJ/Sm3 | 50.60 | 44.44 |
Lower Heat Value | MJ/Sm3 | 39.13 | 12.74 |
Density | Kg/Sm3 | 0.717 | 0.0899 |
Lower flammability limit | % vol | 4.4 | 4.0 |
Higher flammability limit | % vol | 17 | 75 |
Laminar flame velocity | cm/s | 30–40 | 200–300 |
Adiabatic flame temperature | °C | 1962.78 | 2204.44 |
Certified Cylinder | Odorization Level | Test Report | Reference Values | |
---|---|---|---|---|
THT, mg/Sm3 | TBM, mg/Sm3 | |||
100% Methane | Odor_low | C067023 | 5.04 ± 0.25 | 5.00 ± 0.49 |
Odor_medium (THT) | C000824 | 31.8 ± 1.61 | - | |
Odor_medium (TBM) | C067123 | - | 30.2 ± 3.02 | |
Odor_high | C067223 | 100.48 ± 3.03 | 100.13 ± 4.97 | |
80% CH4 + 20% H2 | Odor_low | 25143–SN013206 | 5.16 ± 0.29 | 5.12 ± 0.29 |
Odor_medium | 26459–SN014508 | 31.09 ± 1.27 | 31.7 ± 1.30 | |
Odor_high | 26457–SN014507 | 108.0 ± 3.25 | 102.43 ± 3.13 | |
100% Hydrogen | Odor_low | 26460–SN013215 | 4.88 ± 0.27 | 4.95 ± 0.28 |
Odor_medium | 26459–SN014508 | 30.3 ± 1.20 | 30.0 ± 1.20 | |
Odor_high | 26457–SN014507 | 101.0 ± 3.10 | 99.8 ± 3.10 |
Odor | 100% CH4 | Mix CH4-H2 20% | 100% H2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Low | Medium | High | Low | Medium | High | Low | Medium | High | |
5.00 | 30.19 | 100.06 | 5.17 | 31.66 | 102.86 | 4.78 | 30.13 | 99.76 | |
0.58 | 3.04 | 5.02 | 0.43 | 1.36 | 3.24 | 0.42 | 1.26 | 3.18 | |
5.00 | 30.20 | 100.13 | 5.12 | 31.7 | 102.43 | 4.95 | 30 | 99.8 | |
0.49 | 3.02 | 4.97 | 0.29 | 1.30 | 3.13 | 0.28 | 1.20 | 3.10 | |
0.00 | −0.01 | −0.07 | 0.05 | −0.04 | 0.43 | −0.17 | 0.13 | −0.04 | |
% | 0.0% | 0.0% | −0.1% | 1.0% | −0.1% | 0.4% | −3.4% | 0.4% | 0.0% |
0.00 | 0.06 | 0.04 | 0.10 | 0.02 | 0.10 | 0.34 | 0.07 | 0.01 |
Odor | 100% CH4 | Mix CH4-H2 20% | 100% H2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Low | Medium | High | Low | Medium | High | Low | Medium | High | |
5.04 | 31.84 | 100.50 | 5.18 | 31.82 | 109.31 | 4.91 | 30.33 | 101.61 | |
0.39 | 1.66 | 3.10 | 0.43 | 1.41 | 3.85 | 0.41 | 1.26 | 3.31 | |
5.04 | 31.8 | 100.48 | 5.16 | 31.09 | 108 | 4.88 | 30.3 | 101 | |
0.25 | 1.61 | 3.03 | 0.29 | 1.27 | 3.25 | 0.27 | 1.20 | 3.10 | |
0.00 | 0.04 | 0.02 | 0.02 | 0.73 | 1.31 | 0.03 | 0.03 | 0.61 | |
% | 0.1% | 0.1% | 0.0% | 0.4% | 2.3% | 1.2% | 0.6% | 0.1% | 0.6% |
0.01 | 0.02 | 0.00 | 0.04 | 0.38 | 0.26 | 0.06 | 0.02 | 0.13 |
Retention Time (Min) | THT | TBM |
---|---|---|
for 100% CH4 | 0.7553 | 1.00077 |
for mix CH4 and 20%H2 | 0.7517 | 1.00090 |
for 100% H2 | 0.7505 | 1.00094 |
Description | Unit | Hgas (Gas Grid) | Hgas +5% H2 | Hgas +20% H2 |
---|---|---|---|---|
Methane | % | 92.3934 | 86.9870 | 72.9875 |
Carbondioxide | % | 0.8465 | 0.7978 | 0.6717 |
Ethane | % | 5.3029 | 4.8591 | 4.1791 |
Propane | % | 1.0442 | 0.9593 | 0.8259 |
i-Butane | % | 0.1425 | 0.1347 | 0.1126 |
n-Butane | % | 0.1730 | 0.1592 | 0.1360 |
i-Pentane | % | 0.0398 | 0.0362 | 0.0311 |
n-Pentane | % | 0.0307 | 0.0275 | 0.0240 |
C6+ | % | 0.0271 | 0.0258 | 0.0221 |
Hydrogen | % | 0.0000 | 6.0134 | 21.0100 |
Nitrogen | % | 0.0000 | 0.0000 | 0.0000 |
Total summed quantity | % | 100 | 100 | 100 |
Higher heating value | kWh/Sm3 | 11.7011 | 11.1910 | 9.9755 |
Lower heating value | kWh/Sm3 | 10.5685 | 10.0950 | 8.9673 |
Wobbe index | kWh/Sm3 | 15.0336 | 14.7909 | 14.2138 |
Relative density | -- | 0.6058 | 0.5725 | 0.4926 |
Density | kg/Sm3 | 0.7833 | 0.7402 | 0.6369 |
Molar mass | kg/kmol | 17.5073 | 16.5503 | 14.2522 |
Compressibility | -- | 0.9971 | 0.9975 | 0.9984 |
Odorant concentration (THT) | mg/Sm3 | 44.97 | 42.58 | 35.85 |
Hydrogen Blend | ||
---|---|---|
NG-H2 5% | NG-H2 20% | |
Cmis (mg/Sm3) | 42.58 | 35.85 |
Cref (mg/Sm3) | 41.24 | 35.12 |
E (mg/Sm3) | 1.34 | 0.72 |
E% mean | 3.24% | 2.04% |
E% median | 2.86% | 1.88% |
E% max | 4.16% | 4.17% |
E% min | 2.53% | 0.23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ficco, G.; Cigolotti, V.; Cortellessa, G.; Monteleone, G.; Dell’Isola, M. Impact of Hydrogen-Enriched Natural Gas on the Accuracy of Odorant Measurements. Sensors 2025, 25, 4394. https://doi.org/10.3390/s25144394
Ficco G, Cigolotti V, Cortellessa G, Monteleone G, Dell’Isola M. Impact of Hydrogen-Enriched Natural Gas on the Accuracy of Odorant Measurements. Sensors. 2025; 25(14):4394. https://doi.org/10.3390/s25144394
Chicago/Turabian StyleFicco, Giorgio, Viviana Cigolotti, Gino Cortellessa, Giulia Monteleone, and Marco Dell’Isola. 2025. "Impact of Hydrogen-Enriched Natural Gas on the Accuracy of Odorant Measurements" Sensors 25, no. 14: 4394. https://doi.org/10.3390/s25144394
APA StyleFicco, G., Cigolotti, V., Cortellessa, G., Monteleone, G., & Dell’Isola, M. (2025). Impact of Hydrogen-Enriched Natural Gas on the Accuracy of Odorant Measurements. Sensors, 25(14), 4394. https://doi.org/10.3390/s25144394