Flexible Bioelectrodes-Integrated Miniaturized System for Unconstrained ECG Monitoring
Abstract
1. Introduction
2. Experimental Section
2.1. Preparation of Materials
2.2. Impedance Testing
- The volunteer’s skin was cleansed with 70% isopropyl alcohol and allowed to dry.
- Two biopotential electrodes were positioned on the skin surface at a fixed inter-electrode distance.
- The electrodes were connected to the impedance analyzer’s two terminals, forming a closed electrode-skin-electrode circuit.
- The measurement was conducted using a frequency sweep range of 20 Hz to 15 kHz under an AC excitation voltage of 10 mV (rms). This excitation amplitude was carefully chosen to ensure a sufficiently small signal, thereby preserving the linearity of the system throughout the test. The impedance analyzer was then used to acquire the measurement data.
2.3. Humidity-Resistance Testing
2.4. Composition of the MWS
3. Results and Discussion
3.1. The Design of the MWS for ECG Monitoring
3.2. Preparation and Analysis of the FBE
3.3. Optimization of Signal Conditioning Circuit
3.4. ECG Monitoring Using the MWS in Different Scenarios
3.5. Construction of Exercise Intensity Evaluation Model Based on ECG Features
3.6. Performance Comparison Between MWS and Commercial ECG Monitoring Devices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aziz, S.; Ahmed, S.; Alouini, M.-S. ECG-based machine-learning algorithms for heartbeat classification. Sci. Rep. 2021, 11, 18738. [Google Scholar] [CrossRef]
- Barrett, P.M.; Komatireddy, R.; Haaser, S.; Topol, S.; Sheard, J.; Encinas, J.; Fought, A.J.; Topol, E.J. Comparison of 24-hour Holter Monitoring with 14-day Novel Adhesive Patch Electrocardiographic Monitoring. Am. J. Med. 2014, 127, 95.e11–95.e17. [Google Scholar] [CrossRef] [PubMed]
- Herman, R.; Kisova, T.; Belmonte, M.; Wilgenhof, A.; Toth, G.; Demolder, A.; Rafajdus, A.; Meyers, H.P.; Smith, S.W.; Bartunek, J.; et al. Artificial Intelligence-Powered Electrocardiogram Detecting Culprit Vessel Blood Flow Abnormality: AI-ECG TIMI Study Design and Rationale. J. Soc. Cardiovasc. Angiogr. Interv. 2025, 4, 102494. [Google Scholar] [CrossRef]
- Nakamura, T.; Sasano, T. Emerging Potential and Challenges of AI-Based ECG Analysis in Clinical Medicine. JACC Asia 2025, 5, 99–100. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tian, X.Y.; Sun, P.F.; Zhao, X.L.; Hu, J.T.; Pan, B. Electrocardiographic abnormalities in patients with microtia. Sci. Rep. 2024, 14, 10191. [Google Scholar] [CrossRef]
- Yıldırım, Ö.; Pławiak, P.; Tan, R.-S.; Acharya, U.R. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput. Biol. Med. 2018, 102, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Franklin, D.; Tzavelis, A.; Lee, J.Y.; Chung, H.U.; Trueb, J.; Arafa, H.; Kwak, S.S.; Huang, I.; Liu, Y.; Rathod, M.; et al. Synchronized wearables for the detection of haemodynamic states via electrocardiography and multispectral photoplethysmography. Nat. Biomed. Eng. 2023, 7, 1229–1241. [Google Scholar] [CrossRef] [PubMed]
- Khunte, A.; Sangha, V.; Oikonomou, E.K.; Dhingra, L.S.; Aminorroaya, A.; Mortazavi, B.J.; Coppi, A.; Brandt, C.A.; Krumholz, H.M.; Khera, R. Detection of left ventricular systolic dysfunction from single-lead electrocardiography adapted for portable and wearable devices. npj Digit. Med. 2023, 6, 124. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Ince, T.; Gabbouj, M. Personalized Monitoring and Advance Warning System for Cardiac Arrhythmias. Sci. Rep. 2017, 7, 9270. [Google Scholar] [CrossRef]
- Lin, Z.X.; Kireev, D.; Liu, N.; Gupta, S.; Lapiano, J.; Obaid, S.N.; Chen, Z.Y.; Akinwande, D.; Efimov, I.R. Graphene Biointerface for Cardiac Arrhythmia Diagnosis and Treatment. Adv. Mater. 2023, 35, 2212190. [Google Scholar] [CrossRef]
- Muthukumar, K.A.; Nandi, D.; Ranjan, P.; Ramachandran, K.; Pj, S.; Ghosh, A.; M, A.; Radhakrishnan, A.; Dhandapani, V.E.; Janardhanan, R. Integrating electrocardiogram and fundus images for early detection of cardiovascular diseases. Sci. Rep. 2025, 15, 4390. [Google Scholar] [CrossRef]
- Tricoli, A.; Nasiri, N.; De, S.Y. Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Adv. Funct. Mater. 2017, 27, 1605271. [Google Scholar] [CrossRef]
- Wu, W.T.; Li, L.L.; Li, Z.X.; Sun, J.Z.; Wang, L.L. Extensible Integrated System for Real-Time Monitoring of Cardiovascular Physiological Signals and Limb Health. Adv. Mater. 2023, 35, 2304596. [Google Scholar] [CrossRef]
- World Health Organization. World Health Statistics 2024: Monitoring Health for the SDGs, Sustainable Development Goals. 2024. Available online: https://www.who.int/publications/i/item/9789240094703 (accessed on 21 May 2024).
- Lindstrom, M.; Decleene, N.; Dorsey, H.; Fuster, V.; Johnson, C.O.; Legrand, K.E.; Mensah, G.A.; Razo, C.; Stark, B.; Varieur Turco, J.; et al. Global Burden of Cardiovascular Diseases and Risks Collaboration, 1990–2021. J. Am. Coll. Cardiol. 2022, 80, 2372–2425. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Wang, H.D.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, N.; Erickson, B.; Murphy, B.B.; Richardson, A.G.; Robbins, G.; Apollo, N.V.; Mentzelopoulos, G.; Mathis, T.; Hantanasirisakul, K.; Bagga, P.; et al. MXene-infused bioelectronic interfaces for multiscale electrophysiology and stimulation. Sci. Transl. Med. 2021, 13, eabf8629. [Google Scholar] [CrossRef]
- O’neill, S.J.K.; Huang, Z.H.; Ahmed, M.H.; Boys, A.J.; Velasco-Bosom, S.; Li, J.X.; Owens, R.M.; Mccune, J.A.; Malliaras, G.G.; Scherman, O.A. Tissue-Mimetic Supramolecular Polymer Networks for Bioelectronics. Adv. Mater. 2023, 35, 2207634. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Nie, Y.; Zhu, H.; Xu, Y.; Cao, S.; Zhang, J.; Li, Y.; Wang, J.; Ning, X.; Kong, D. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 2022, 8, eabl5511. [Google Scholar] [CrossRef]
- Hossain, M.M.; Li, B.M.; Sennik, B.; Jur, J.S.; Bradford, P.D. Adhesive free, conformable and washable carbon nanotube fabric electrodes for biosensing. npj Flex. Electron. 2022, 6, 97. [Google Scholar] [CrossRef]
- Lee, S.; Ho, D.H.; Jekal, J.; Cho, S.Y.; Choi, Y.J.; Oh, S.; Choi, Y.Y.; Lee, T.; Jang, K.-I.; Cho, J.H. Fabric-based lamina emergent MXene-based electrode for electrophysiological monitoring. Nat. Commun. 2024, 15, 5974. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Shen, Z.; Wang, Z.; Qi, L.Y.; Niu, H.T.; Zhou, H.; Zhang, C.; Xu, J.; Fang, J. Low-Contact Impedance Textile Electrode for Real-Time Detection of ECG Signals. ACS Appl. Mater. 2024, 16, 57860–57869. [Google Scholar] [CrossRef] [PubMed]
- Kruse, K.; Sauerwein, W.; Lübben, J.; Dodel, R. Smart technologies and textiles and their potential use and application in the care and support of elderly individuals: A systematic review. Rev. Adv. Mater. Sci. 2024, 63, 20230174. [Google Scholar] [CrossRef]
- Villar, R.; Beltrame, T.; Hughson, R.L. Validation of the Hexoskin wearable vest during lying, sitting, standing, and walking activities. Appl. Physiol. Nutr. Metab. 2015, 40, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Sato, R.; Takagahara, K.; Ishihara, T.; Watanabe, K.; Togo, H. Validation of Wearable Device Consisting of a Smart Shirt with Built-In Bioelectrodes and a Wireless Transmitter for Heart Rate Monitoring in Light to Moderate Physical Work. Sensors 2022, 22, 9241. [Google Scholar] [CrossRef]
- Dong, J.C.; Wang, D.; Peng, Y.D.; Zhang, C.; Lai, F.L.; He, G.J.; Ma, P.M.; Dong, W.F.; Huang, Y.P.; Parkin, I.P.; et al. Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy 2022, 97, 107160. [Google Scholar] [CrossRef]
- Chi, Y.M.; Jung, T.P.; Cauwenberghs, G. Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review. IEEE Rev. Biomed. Eng. 2010, 3, 106–119. [Google Scholar] [CrossRef]
- Li, T.; Qi, H.B.; Zhao, C.C.; Li, Z.M.; Zhou, W.; Li, G.J.; Zhuo, H.; Zhai, W. Robust skin-integrated conductive biogel for high-fidelity detection under mechanical stress. Nat. Commun. 2025, 16, 88. [Google Scholar] [CrossRef]
- Wang, F.C.; Xue, Y.; Chen, X.M.; Zhang, P.; Shan, L.J.; Duan, Q.F.; Xing, J.F.; Lan, Y.; Lu, B.Y.; Liu, J. 3D Printed Implantable Hydrogel Bioelectronics for Electrophysiological Monitoring and Electrical Modulation. Adv. Funct. Mater. 2024, 34, 2314471. [Google Scholar] [CrossRef]
- Wang, P.; Lv, Y.; Duan, J.L.; Sun, G.F.; Meng, C.Z.; Li, Y.; Guo, S.J.; Zhang, T. A thermally responsive phase-change hydrogel for skin-mountable multifunctional sensors. Nano Energy 2025, 136, 110722. [Google Scholar] [CrossRef]
- Xu, K.; Wang, L.M.; Shan, W.J.; Gao, K.; Wang, J.P.; Zhong, Q.; Zhou, W.L. Highly Stretchable and Self-Adhesive Wearable Biosensor Based on Nanozyme-Catalyzed Conductive Hydrogels. ACS Appl. Polym. Mater. 2024, 6, 2188–2200. [Google Scholar] [CrossRef]
- Liu, C.C.; Wang, Y.Y.; Shi, S.T.; Zheng, Y.B.; Ye, Z.W.; Liao, J.Q.; Sun, Q.F.; Dang, B.K.; Shen, X.P. Myelin Sheath-Inspired Hydrogel Electrode for Artificial Skin and Physiological Monitoring. ACS Nano 2024, 18, 27420–27432. [Google Scholar] [CrossRef] [PubMed]
- Le, K.; Sun, X.; Chen, J.J.; John, J.V.; Servati, A.; Heidari, H.; Khademhosseini, A.; Ko, F.; Jiang, F.; Servati, P. Stretchable, self-healing, biocompatible, and durable ionogel for continuous wearable strain and physiological signal monitoring. Chem. Eng. J. 2023, 471, 144675. [Google Scholar] [CrossRef]
- Qiu, J.K.; Yu, T.H.; Zhang, W.F.; Zhao, Z.H.; Zhang, Y.; Ye, G.; Zhao, Y.; Du, X.J.; Liu, X.; Yang, L.; et al. A Bioinspired, Durable, and Nondisposable Transparent Graphene Skin Electrode for Electrophysiological Signal Detection. Mater. Lett. 2020, 2, 999–1007. [Google Scholar] [CrossRef]
- Wang, Q.; Ling, S.J.; Liang, X.P.; Wang, H.M.; Lu, H.J.; Zhang, Y.Y. Self-Healable Multifunctional Electronic Tattoos Based on Silk and Graphene. Adv. Funct. Mater. 2019, 29, 1808695. [Google Scholar] [CrossRef]
- Joutsen, A.; Cömert, A.; Kaappa, E.; Vanhatalo, K.; Riistama, J.; Vehkaoja, A.; Eskola, H. ECG signal quality in intermittent long-term dry electrode recordings with controlled motion artifacts. Sci. Rep. 2024, 14, 8882. [Google Scholar] [CrossRef]
- Zhang, L.; Kumar, K.S.; He, H.; Cai, C.J.; He, X.; Gao, H.X.; Yue, S.Z.; Li, C.S.; Seet, R.C.-S.; Ren, H.L.; et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 2020, 11, 4683. [Google Scholar] [CrossRef]
- Mirbakht, S.S.; Golparvar, A.; Umar, M.; Kuzubasoglu, B.A.; Irani, F.S.; Yapici, M.K. Highly Self-Adhesive and Biodegradable Silk Bioelectronics for All-In-One Imperceptible Long-Term Electrophysiological Biosignals Monitoring. Adv. Sci. 2025, 12, 2405988. [Google Scholar] [CrossRef]
- Lu, J.; Li, Q.M.; Huang, Q.Y.; Li, D.; Jiao, Y.D.; Wang, Y.Z.; Li, Y.; Zou, K.Y.; Chen, Z.L.; Gu, J.Y.; et al. A Highly Sensitive Surface Electrode for Electrophysiological Monitoring. Adv. Funct. Mater. 2025, 35, 2421132. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.K.; Zhao, Y.; Lin, X.H.; Luo, S.C.; Wang, Y.; Li, L.L.; Teng, C.; Wang, X.L.; Xue, G.; et al. Ultrathin and highly breathable electronic tattoo for sensing multiple signals imperceptibly on the skin. Nano Energy 2023, 107, 108092. [Google Scholar] [CrossRef]
- Vikhe, R.; Masure, S.; Das, M.K.; Mishra, A.; Sreehari, E.; Kulhari, U.; Sahu, B.D.; Sharma, L.N.; Loganathan, S.; Kumar, S. Fabrication, Characterization, and Clinical Assessment of Ultrathin Skin-Conformable Tattoo Electrodes for ECG Monitoring. ACS Appl. Electron. Mater. 2025, 7, 1611–1621. [Google Scholar] [CrossRef]
- Gao, J.W.; Hu, M.W.; Sun, H.; Wang, Y.Y.; Wei, Y.; Li, W.W.; Zheng, L.; Xu, M.Z.; Lu, Q.B.; Liu, Z.Y.; et al. Disposable and flexible smart electronic tapes for long-term biopotential monitoring. npj Flex. Electron. 2025, 9, 6. [Google Scholar] [CrossRef]
- Chen, J.X.M.; Chen, T.H.; Zhang, Y.X.; Fang, W.Q.; Li, W.E.; Li, T.; Popovic, M.R.; Naguib, H.E. Conductive Bio-based Hydrogel for Wearable Electrodes via Direct Ink Writing on Skin. Adv. Funct. Mater. 2024, 34, 2403721. [Google Scholar] [CrossRef]
- Luo, J.B.; Sun, C.Y.; Chang, B.Y.; Zhang, B.; Li, K.; Li, Y.G.; Zhang, Q.H.; Wang, H.Z.; Hou, C.Y. On-Skin Paintable Water-Resistant Biohydrogel for Wearable Bioelectronics. Adv. Funct. Mater. 2024, 34, 2400884. [Google Scholar] [CrossRef]
- Zang, J.B.; An, Q.; Li, B.; Zhang, Z.D.; Gao, L.B.; Xue, C.Y. A novel wearable device integrating ECG and PCG for cardiac health monitoring. Microsyst. Nanoeng. 2025, 11, 7. [Google Scholar] [CrossRef]
- Takeshita, T.; Yoshida, M.; Takei, Y.; Ouchi, A.; Hinoki, A.; Uchida, H.; Kobayashi, T. Development of wearable multi-lead ECG measurement device using cubic flocked electrode. Sci. Rep. 2022, 12, 19308. [Google Scholar] [CrossRef]
- Wang, W.T.; Lu, L.S.; Ma, H.; Li, Z.H.; Lu, X.Y.; Xie, Y.X. Self-template manufacturing of on-skin electrodes with 3D multi-channel structure for standard 3-limb-lead ECG suit. Microsyst. Nanoeng. 2024, 10, 196. [Google Scholar] [CrossRef]
- Mauritzen, C.a.M.; Stewart, P. Disulphide-Sulphydryl Exchange in Dough. Nature 1963, 197, 48–49. [Google Scholar] [CrossRef]
- Talavera, J.R.; Mendoza, E.A.S.; Dávila, N.M.; Supo, E. Implementation of a real-time 60 Hz interference cancellation algorithm for ECG signals based on ARM cortex M4 and ADS1298. In Proceedings of the 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Cusco, Peru, 15 August 2017; pp. 1–4. [Google Scholar]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Hong, S.; Zhou, Y.; Shang, J.; Xiao, C.; Sun, J. Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. Comput. Biol. Med. 2020, 122, 103801. [Google Scholar] [CrossRef]
- Kwon, J.-M.; Kim, K.-H.; Jeon, K.-H.; Kim, H.M.; Kim, M.J.; Lim, S.-M.; Song, P.S.; Park, J.; Choi, R.K.; Oh, B.-H. Development and Validation of Deep-Learning Algorithm for Electrocardiography-Based Heart Failure Identification. Korean Circ. J. 2019, 49, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.H.; Ribeiro, M.H.; Paixao, G.M.M.; Oliveira, D.M.; Gomes, P.R.; Canazart, J.A.; Ferreira, M.P.S.; Andersson, C.R.; Macfarlane, P.W.; Meira, W., Jr.; et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat. Commun. 2020, 11, 1760. [Google Scholar] [CrossRef] [PubMed]
- Toma, T.I.; Choi, S. A Parallel Cross Convolutional Recurrent Neural Network for Automatic Imbalanced ECG Arrhythmia Detection with Continuous Wavelet Transform. Sensors 2022, 22, 7396. [Google Scholar] [CrossRef]
- Han, D.; Qi, H.; Hou, D.; Wang, S.; Kong, J.; Xu, X.; Wang, C. Dynamic detection mechanism model of acoustic emission for high-speed train axle box bearings with local defects. Mech. Syst. Signal Process 2025, 235, 112943. [Google Scholar] [CrossRef]
- Han, D.; Qi, H.; Wang, S.; Hou, D.; Wang, C. Adaptive step size forward-backward pursuit and acoustic emission-based health state assessment of high-speed train bearings. Struct. Health Monit. 2024, 2024, 14759217241271036. [Google Scholar] [CrossRef]
- Borresen, J.; Lambert, M.I. Changes in heart rate recovery in response to acute changes in training load. Eur. J. Appl. Physiol. 2007, 101, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.-Y.; Bunsawat, K.; Amann, M. Autonomic cardiovascular control during exercise. Am. J. Physiol-Heart C 2023, 325, H675–H686. [Google Scholar] [CrossRef]
- Bansal, A.; Joshi, R. Portable out-of-hospital electrocardiography: A review of current technologies. J. Arrhythmia 2018, 34, 129–138. [Google Scholar] [CrossRef]
Product | Kardia Mobile | Omron HeartScan | REKA E100 | AfibAlert | MWS |
---|---|---|---|---|---|
Dimensions (mm3) | |||||
Weight (g) | 18 | 130 | 105 | 184 | 63 |
Price | 79(USD) | 42,500(EUR) | 249(USD) | 50(CNY) | |
On-device Display | Requires smartphone | YES | NO | NO | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, Y.; Wang, X.; Yang, J. Flexible Bioelectrodes-Integrated Miniaturized System for Unconstrained ECG Monitoring. Sensors 2025, 25, 4213. https://doi.org/10.3390/s25134213
Zhan Y, Wang X, Yang J. Flexible Bioelectrodes-Integrated Miniaturized System for Unconstrained ECG Monitoring. Sensors. 2025; 25(13):4213. https://doi.org/10.3390/s25134213
Chicago/Turabian StyleZhan, Yaoliang, Xue Wang, and Jin Yang. 2025. "Flexible Bioelectrodes-Integrated Miniaturized System for Unconstrained ECG Monitoring" Sensors 25, no. 13: 4213. https://doi.org/10.3390/s25134213
APA StyleZhan, Y., Wang, X., & Yang, J. (2025). Flexible Bioelectrodes-Integrated Miniaturized System for Unconstrained ECG Monitoring. Sensors, 25(13), 4213. https://doi.org/10.3390/s25134213