Applying a Virtual Art Therapy System Based on the Michelangelo Effect in Patients with Spinal Cord Injury
Abstract
Highlights
- High scores in terms of USEQ and NASA were reported for the proposed Virtual Art Therapy System both for patients and healthy subjects. It can be administered in patients with spinal cord injury for the rehabilitation of their upper limbs.
- Most of the kinematic variables automatically measured by the system were significantly different between patients and healthy subjects. Analysis in the frequency domain of subjects’ movements showed a high horizontal (but not vertical) variability in the spectrum.
- Virtual Art Therapy System is a comfortable and user-friendly technique for administering upper-limb therapy in patients with spinal cord injury.
- The System also provides quantitative measures of the kinematic parameters of patients that are helpful in assessing patients’ deficits and performances.
- The spectral analysis could be helpful for verifying the match between the rehabilitation aims and the task executions.
Abstract
1. Introduction
2. Materials and Methods
2.1. Virtual Art Therapy System: Hardware and Software
2.2. Protocol of Acquisition
2.3. Participants
2.4. Kinematic Data Acquisition and Processing
- Controller’s coordinates in space and time;
- “score”: the percentage of canvas pixels discovered;
- These data were elaborated and analyzed in post-processing with a MATLAB (version 24.2.0.2871072, R2024b, Update 5, MathWorks Inc., Natick, MA, USA) specific script. About the controller’s trajectories, only the x and y coordinates were considered to study the plane of the canvas; then, the trajectories have been elaborated selecting only the samples related to the painting activity and applying a moving average filter. From these data, some parameters have been calculated, first of all, the kinematic quantities:
- Time to complete the trial (s);
- Normalized jerk (NJ), calculated as in [37];
- Length of the trajectory covered by the hand (m), calculated as the pathway performed on the frontal plane in which the canvas was laid;
- Patients’ performances are expected to be characterized by a longer time needed to complete each trial and a longer trajectory with respect to healthy subjects. The jerk is the derivative of the acceleration with respect to time and, after being normalized for trial duration, it is a measure of roughness and irregularity in the brush trajectory [37]. It is expected to be higher in patients than in healthy subjects, because in the latter people the movements are usually more smoothed and fluid.
- Then, spectral quantities were computed by an analysis in the frequency domain for the trajectory of, separately, the x and y components, taking into account the sampling frequency of the system (50 Hz). The following parameters were computed:
- Dominant frequency of the power spectrum (Hz), selected as the frequency of the spectrum with the highest magnitude;
- Mean value of magnitude of the spectrum (in meters, m);
- Energy spectrum (m2), calculated as the sum of the squares of the amplitudes of the spectrum;
- Variance of the spectrum (m2), calculated as the dispersion of the spectral content around its centroid.
2.5. Statistical Analysis
3. Results
3.1. Kinematic and Spectral Quantities
3.2. Usability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Kim, M.; Park, J.; Shin, N.; Han, Y. Effectiveness of Virtual Reality in Healthcare Education: Systematic Review and Meta-Analysis. Sustainability 2024, 16, 8520. [Google Scholar] [CrossRef]
- Tene, T.; Vique López, D.F.; Valverde Aguirre, P.E.; Orna Puente, L.M.; Vacacela Gomez, C. Virtual Reality and Augmented Reality in Medical Education: An Umbrella Review. Front. Digit. Health 2024, 6, 1365345. [Google Scholar] [CrossRef]
- Mergen, M.; Graf, N.; Meyerheim, M. Reviewing the Current State of Virtual Reality Integration in Medical Education—A Scoping Review. BMC Med. Educ. 2024, 24, 788. [Google Scholar] [CrossRef]
- Graf, L.; Liszio, S.; Masuch, M. Playing in Virtual Nature: Improving Mood of Elderly People Using VR Technology. In Proceedings of the MuC’20: Proceedings of Mensch und Computer 2020, Magdeburg, Germany, 6–9 September 2020; pp. 155–164. [Google Scholar] [CrossRef]
- Feng, H.; Li, C.; Liu, J.; Wang, L.; Ma, J.; Li, G.; Gan, L.; Shang, X.; Wu, Z. Virtual Reality Rehabilitation versus Conventional Physical Therapy for Improving Balance and Gait in Parkinson’s Disease Patients: A Randomized Controlled Trial. Med. Sci. Monit. 2019, 25, 4186–4192. [Google Scholar] [CrossRef]
- Quan, W.; Liu, S.; Cao, M.; Zhao, J. A Comprehensive Review of Virtual Reality Technology for Cognitive Rehabilitation in Patients with Neurological Conditions. Appl. Sci. 2024, 14, 6285. [Google Scholar] [CrossRef]
- Mani Bharathi, V.; Manimegalai, P.; George, S.T.; Pamela, D.; Mohammed, M.A.; Abdulkareem, K.H.; Jaber, M.M.; Damaševičius, R. A Systematic Review of Techniques and Clinical Evidence to Adopt Virtual Reality in Post-Stroke Upper Limb Rehabilitation. Virtual Real. 2024, 28, 172. [Google Scholar] [CrossRef]
- Ceradini, M.; Losanno, E.; Micera, S.; Bandini, A.; Orlandi, S. Immersive VR for Upper-Extremity Rehabilitation in Patients with Neurological Disorders: A Scoping Review. J. Neuroeng. Rehabil. 2024, 21, 75. [Google Scholar] [CrossRef]
- Wiemeyer, J.; Kliem, A. Serious Games in Prevention and Rehabilitation-a New Panacea for Elderly People? Eur. Rev. Aging Phys. Act. 2012, 9, 41–50. [Google Scholar] [CrossRef]
- Bressler, M.; Merk, J.; Gohlke, T.; Kayali, F.; Daigeler, A.; Kolbenschlag, J.; Prahm, C. A Virtual Reality Serious Game for the Rehabilitation of Hand and Finger Function: Iterative Development and Suitability Study. JMIR Serious Games 2024, 12, e54193. [Google Scholar] [CrossRef]
- Franzò, M.; Marinozzi, F.; Finti, A.; Lattao, M.; Trabassi, D.; Castiglia, S.F.; Serrao, M.; Bini, F. Mixed Reality-Based Smart Occupational Therapy Personalized Protocol for Cerebellar Ataxic Patients. Brain Sci. 2024, 14, 1023. [Google Scholar] [CrossRef]
- Ham, Y.; Yang, D.S.; Choi, Y.; Shin, J.H. Effectiveness of Mixed Reality-Based Rehabilitation on Hands and Fingers by Individual Finger-Movement Tracking in Patients with Stroke. J. Neuroeng. Rehabil. 2024, 21, 140. [Google Scholar] [CrossRef]
- Shamri Zeevi, L. Making Art Therapy Virtual: Integrating Virtual Reality Into Art Therapy With Adolescents. Front. Psychol. 2021, 12, 584943. [Google Scholar] [CrossRef]
- Hadjipanayi, C.; Banakou, D.; Michael-Grigoriou, D. Art as Therapy in Virtual Reality: A Scoping Review. Front. Virtual Real. 2023, 4, 1065863. [Google Scholar] [CrossRef]
- Salera, C.; Capua, C.; De Angelis, D.; Coiro, P.; Venturiero, V.; Savo, A.; Marinozzi, F.; Bini, F.; Paolucci, S.; Antonucci, G.; et al. Michelangelo Effect in Cognitive Rehabilitation: Using Art in a Digital Visuospatial Memory Task. Brain Sci. 2024, 14, 479. [Google Scholar] [CrossRef]
- Oliva, A.; Iosa, M.; Antonucci, G.; De Bartolo, D. Are Neuroaesthetic Principles Applied in Art Therapy Protocols for Neurorehabilitation? A Systematic Mini-Review. Front. Psychol. 2023, 14, 1158304. [Google Scholar] [CrossRef]
- Iosa, M.; Aydin, M.; Candelise, C.; Coda, N.; Morone, G.; Antonucci, G.; Marinozzi, F.; Bini, F.; Paolucci, S.; Tieri, G. The Michelangelo Effect: Art Improves the Performance in a Virtual Reality Task Developed for Upper Limb Neurorehabilitation. Front. Psychol. 2021, 11, 611956. [Google Scholar] [CrossRef]
- De Giorgi, R.; Fortini, A.; Aghilarre, F.; Gentili, F.; Morone, G.; Antonucci, G.; Vetrano, M.; Tieri, G.; Iosa, M. Virtual Art Therapy: Application of Michelangelo Effect to Neurorehabilitation of Patients with Stroke. J. Clin. Med. 2023, 12, 2590. [Google Scholar] [CrossRef]
- Tieri, G.; Iosa, M.; Fortini, A.; Aghilarre, F.; Gentili, F.; Rubeca, C.; Mastropietro, T.; Antonucci, G.; De Giorgi, R. Efficacy of a Virtual Reality Rehabilitation Protocol Based on Art Therapy in Patients with Stroke: A Single-Blind Randomized Controlled Trial. Brain Sci. 2024, 14, 863. [Google Scholar] [CrossRef]
- Scivoletto, G.; Miscusi, M.; Forcato, S.; Ricciardi, L.; Serrao, M.; Bellitti, R.; Raco, A. The Rehabilitation of Spinal Cord Injury Patients in Europe. In Trends in Reconstructive Neurosurgery; Springer: Berlin/Heidelberg, Germany, 2017; pp. 203–210. ISBN 9783319395456. [Google Scholar]
- Duan, R.; Qu, M.; Yuan, Y.; Lin, M.; Liu, T.; Huang, W.; Gao, J.; Zhang, M.; Yu, X. Clinical Benefit of Rehabilitation Training in Spinal Cord Injury. Spine 2021, 46, E398–E410. [Google Scholar] [CrossRef]
- Ho, C.; Atchison, K.; Noonan, V.K.; McKenzie, N.; Cadel, L.; Ganshorn, H.; Rivera, J.M.B.; Yousefi, C.; Guilcher, S.J.T. Models of Care Delivery from Rehabilitation to Community for Spinal Cord Injury: A Scoping Review. J. Neurotrauma 2021, 38, 677–697. [Google Scholar] [CrossRef]
- Rodríguez-Mendoza, B.; Santiago-Tovar, P.A.; Guerrero-Godinez, M.A.; García-Vences, E. Rehabilitation Therapies in Spinal Cord Injury Patients. In Paraplegia; IntechOpen: London, UK, 2021. [Google Scholar]
- Stasolla, F.; Lopez, A.; Akbar, K.; Vinci, L.A.; Cusano, M. Matching Assistive Technology, Telerehabilitation, and Virtual Reality to Promote Cognitive Rehabilitation and Communication Skills in Neurological Populations: A Perspective Proposal. Technologies 2023, 11, 43. [Google Scholar] [CrossRef]
- Orsatti Sánchez, B.A.; Diaz Hernandez, O. Efficacy of Virtual Reality in Neurorehabilitation of Spinal Cord Injury Patients: A Systematic Review. Rev. Mex. Ing. Biomed. 2021, 42, 90–103. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Ai, H.; Liu, Y. Effects of Virtual Reality Rehabilitation after Spinal Cord Injury: A Systematic Review and Meta-Analysis. J. Neuroeng. Rehabil. 2024, 21, 191. [Google Scholar] [CrossRef]
- Alashram, A.R.; Padua, E.; Hammash, A.K.; Lombardo, M.; Annino, G. Effectiveness of Virtual Reality on Balance Ability in Individuals with Incomplete Spinal Cord Injury: A Systematic Review. J. Clin. Neurosci. 2020, 72, 322–327. [Google Scholar] [CrossRef]
- de Miguel-Rubio, A.; Dolores Rubio, M.; Alba-Rueda, A.; Salazar, A.; Moral-Munoz, J.A.; Lucena-Anton, D. Virtual Reality Systems for Upper Limb Motor Function Recovery in Patients with Spinal Cord Injury: Systematic Review and Meta-Analysis. JMIR mHealth uHealth 2020, 8, e22537. [Google Scholar] [CrossRef]
- Chi, B.; Chau, B.; Yeo, E.; Ta, P. Virtual Reality for Spinal Cord Injury-Associated Neuropathic Pain: Systematic Review. Ann. Phys. Rehabil. Med. 2019, 62, 49–57. [Google Scholar] [CrossRef]
- Scalise, M.; Bora, T.S.; Zancanella, C.; Safa, A.; Stefini, R.; Cannizzaro, D. Virtual Reality as a Therapeutic Tool in Spinal Cord Injury Rehabilitation: A Comprehensive Evaluation and Systematic Review. J. Clin. Med. 2024, 13, 5429. [Google Scholar] [CrossRef]
- Leemhuis, E.; Giuffrida, V.; Giannini, A.M.; Pazzaglia, M. A Therapeutic Matrix: Virtual Reality as a Clinical Tool for Spinal Cord Injury-Induced Neuropathic Pain. Brain Sci. 2021, 11, 1201. [Google Scholar] [CrossRef]
- Heyn, P.; Baumgardner, C.; McLachlan, L.; Bodine, C. Mixed-Reality Exercise Effects on Participation of Individuals with Spinal Cord Injuries and Developmental Disabilities: A Pilot Study. Top. Spinal Cord Inj. Rehabil. 2014, 20, 338–345. [Google Scholar] [CrossRef]
- Williamson, S.D.; Aaby, A.O.; Ravn, S.L. Psychological Outcomes of Extended Reality Interventions in Spinal Cord Injury Rehabilitation: A Systematic Scoping Review. Spinal Cord 2025, 63, 58–65. [Google Scholar] [CrossRef]
- DeBre, E.; Gotsis, M. The Feasibility of Mixed Reality Gaming as a Tool for Physical Therapy Following a Spinal Cord Injury. J. Emerg. Investig. 2018, 1–8. [Google Scholar] [CrossRef]
- Ferrero, L.; Quiles, V.; Ortiz, M.; Iáñez, E.; Gil-Agudo, Á.; Azorín, J.M. Brain-Computer Interface Enhanced by Virtual Reality Training for Controlling a Lower Limb Exoskeleton. iScience 2023, 26, 106675. [Google Scholar] [CrossRef]
- Gil-Gómez, J.A.; Manzano-Hernández, P.; Albiol-Pérez, S.; Aula-Valero, C.; Gil-Gómez, H.; Lozano-Quilis, J.A. USEQ: A Short Questionnaire for Satisfaction Evaluation of Virtual Rehabilitation Systems. Sensors 2017, 17, 1589. [Google Scholar] [CrossRef]
- Yan, J.H.; Hinrichs, R.N.; Payne, V.G.; Thomas, J.R. Normalized Jerk: A Measure to Capture Developmental Characteristics of Young Girls’ Overarm Throwing. J. Appl. Biomech. 2000, 16, 196–203. [Google Scholar] [CrossRef]
- Iosa, M.; Bini, F.; Marinozzi, F.; Antonucci, G.; Pascucci, S.; Baghini, G.; Guarino, V.; Paolucci, S.; Morone, G.; Tieri, G. Inside the Michelangelo Effect: The Role of Art and Aesthetic Attractiveness on Perceived Fatigue and Hand Kinematics in Virtual Painting. PsyCh J. 2022, 11, 748–754. [Google Scholar] [CrossRef]
- Pascucci, S.; Forte, G.; Angelini, E.; Marinozzi, F.; Bini, F.; Antonucci, G.; Iosa, M.; Tieri, G. Michelangelo Effect in Virtual Sculpturing: Prospective for Motor Neurorehabilitation in the Metaverse. J. Cogn. 2024, 7, 17. [Google Scholar] [CrossRef]
- de los Reyes-Guzmán, A.; Dimbwadyo-Terrer, I.; Pérez-Nombela, S.; Monasterio-Huelin, F.; Torricelli, D.; Pons, J.L.; Gil-Agudo, A. Novel Kinematic Indices for Quantifying Movement Agility and Smoothness after Cervical Spinal Cord Injury. NeuroRehabil. Int. Interdiscip. J. 2016, 38, 199–209. [Google Scholar] [CrossRef]
- Mesbah, S.; Gonnelli, F.; Angeli, C.A.; El-baz, A.; Harkema, S.J.; Rejc, E. Neurophysiological Markers Predicting Recovery of Standing in Humans with Chronic Motor Complete Spinal Cord Injury. Sci. Rep. 2019, 9, 14474. [Google Scholar] [CrossRef]
- Lim, D.Y.; Hwang, D.M.; Cho, K.H.; Moon, C.W.; Ahn, S.Y. A Fully Immersive Virtual Reality Method for Upper Limb Rehabilitation in Spinal Cord Injury. Ann. Rehabil. Med. 2020, 44, 311–319. [Google Scholar] [CrossRef]
- Macrì, E.; Limoni, C. Artistic Activities and Psychological Well-Being Perceived by Patients with Spinal Cord Injury. Arts Psychother. 2017, 54, 1–6. [Google Scholar] [CrossRef]
- Nazari, H.; Saadatjoo, A.; Tabiee, S.; Nazari, A. The Effect of Clay Therapy on Anxiety, Depression, and Happiness in People with Physical Disabilities. Mod. Care J. 2018; in press. [Google Scholar] [CrossRef]
- Gerber, L.H.; Deshpande, R.; Prabhakar, S.; Cai, C.; Garfinkel, S.; Morse, L.; Harrington, A.L. Narrative Review of Clinical Practice Guidelines for Rehabilitation of People With Spinal Cord Injury: 2010–2020. Am. J. Phys. Med. Rehabil. 2021, 100, 501–512. [Google Scholar] [CrossRef]
- Creighton, C.; Dijkers, M.; Bennett, N.; Brown, K. Reasoning and the Art of Therapy for Spinal Cord Injury. Am. J. Occup. Ther. 1995, 49, 311–317. [Google Scholar] [CrossRef]
- Fancourt, D.; Finn, S. What Is the Evidence on the Role of the Arts in Improving Health and Well-Being? A Scoping Review; WHO Regional Office for Europe: Copenhagen, Danmark, 2019; ISBN 9789289054553. [Google Scholar]
Age | T/NT | LEVEL | ASIA | GRASSP DH | GRASSP NDH | UEMS | MAS | SCIM |
---|---|---|---|---|---|---|---|---|
68 | T | C6 | C | 68 | 51 | 38 | 2 | 21 |
64 | T | C5 | C | 63 | 66 | 36 | 5 | 63 |
65 | T | C4 | D | 64 | 47 | 26 | 16 | 27 |
29 | NT | C5 | C | 70 | 69 | 32 | 1 | 68 |
51 | T | C5 | C | 72 | 36 | 28 | 6.5 | 21 |
48 | T | C5 | C | 81 | 81 | 38 | 4.5 | 68 |
60 | T | C5 | C | 20 | 27 | 18 | 8 | 13 |
55 | NT | C1 | D | 55 | 59 | 34 | 5.5 | 38 |
66 | T | C5 | C | 39 | 44 | 29 | 7.5 | 10 |
64 | NT | C5 | D | 57 | 58 | 32 | 7.5 | 79 |
52 | T | C5 | D | 92 | 91 | 48 | 1 | 79 |
66 | T | C4 | D | 81 | 81 | 40 | 9 | 58 |
66 | T | C3 | D | 59 | 62 | 31 | 7.5 | 76 |
Kinematic Parameter | NON-ARTISTIC STIMULI | ARTISTIC PAINTINGS | ||||
---|---|---|---|---|---|---|
HG Mean ± SD | PG Mean ± SD | p-Value | HG Mean ± SD | PG Mean ± SD | p-Value | |
time to complete the trial (s) | 15.6 ± 2.0 | 52.2 ± 34.9 | <0.001 * | 17 ± 3 | 53.3 ± 46.6 | <0.001 * |
normalized jerk (NJ) | 1.56 ± 1 × 107 | 5.44 ± 6.6 × 107 | 0.068 | 3.04 ± 2.4 × 107 | 2.26 ± 2.3 × 107 | 0.336 |
length of hand trajectory (m) | 7.77 ± 1.74 | 12.10 ± 3.56 | <0.001 * | 7.67 ± 1.67 | 12.3 ± 4.68 | <0.001 * |
Spectral Parameter | NON-ARTISTIC STIMULI | ARTISTIC PAINTINGS | |||||
---|---|---|---|---|---|---|---|
HG Mean ± SD | PG Mean ± SD | p-Value | HG Mean ± SD | PG Mean ± SD | p-Value | ||
dominant frequency of the power spectrum (Hz) | X | 0.14 ± 0.07 | 0.05 ± 0.04 | <0.001 * | 0.13 ± 0.05 | 0.05 ± 0.03 | <0.001 * |
Y | 0 | 0 | - | 0 | 0 | - | |
mean value of amplitude spectrum (m) | X | 35 ± 18 × 10−4 | 6.6 ± 6.5 × 10−4 | <0.001 * | 33.2 ± 16 × 10−4 | 10.6 ± 11 × 10−4 | <0.001 * |
Y | 28.2 ± 4.0 × 10−4 | 10.7 ± 7.5 × 10−4 | <0.001 * | 26.5 ± 5.8 × 10−4 | 11.5 ± 5.4 × 10−4 | <0.001 * | |
energy spectrum (m2) | X | 0.057 ± 0.035 | 0.026 ± 0.012 | 0.022 * | 0.065 ± 0.034 | 0.035 ± 0.03 | 0.058 |
Y | 0.332 ± 0.096 | 0.274 ± 0.029 | <0.001 * | 0.332 ± 0.006 | 0.288 ± 0.022 | <0.001 | |
variance of the spectrum (m2) | X | 1.2 ± 0.7 × 10−4 | 5.8 ± 9.8 × 10−5 | 0.005 * | 1.1 ± 0.7 × 10−4 | 3.0 ± 5.6 × 10−5 | <0.001 * |
Y | 9.9 ± 1.3 × 10−4 | 3.1 ± 2.5 × 10−4 | <0.001 * | 9.4 ± 2.2 × 10−4 | 3.2 ± 1.8 × 10−4 | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franzò, M.; De Angelis, S.; Iosa, M.; Tieri, G.; Corsini, G.; Cellupica, G.G.; Loi, V.; Bini, F.; Marinozzi, F.; Scivoletto, G.; et al. Applying a Virtual Art Therapy System Based on the Michelangelo Effect in Patients with Spinal Cord Injury. Sensors 2025, 25, 4173. https://doi.org/10.3390/s25134173
Franzò M, De Angelis S, Iosa M, Tieri G, Corsini G, Cellupica GG, Loi V, Bini F, Marinozzi F, Scivoletto G, et al. Applying a Virtual Art Therapy System Based on the Michelangelo Effect in Patients with Spinal Cord Injury. Sensors. 2025; 25(13):4173. https://doi.org/10.3390/s25134173
Chicago/Turabian StyleFranzò, Michela, Sara De Angelis, Marco Iosa, Gaetano Tieri, Giorgia Corsini, Giovanni Generoso Cellupica, Valentina Loi, Fabiano Bini, Franco Marinozzi, Giorgio Scivoletto, and et al. 2025. "Applying a Virtual Art Therapy System Based on the Michelangelo Effect in Patients with Spinal Cord Injury" Sensors 25, no. 13: 4173. https://doi.org/10.3390/s25134173
APA StyleFranzò, M., De Angelis, S., Iosa, M., Tieri, G., Corsini, G., Cellupica, G. G., Loi, V., Bini, F., Marinozzi, F., Scivoletto, G., & Tamburella, F. (2025). Applying a Virtual Art Therapy System Based on the Michelangelo Effect in Patients with Spinal Cord Injury. Sensors, 25(13), 4173. https://doi.org/10.3390/s25134173