Construction and Validation of a Digital Twin-Driven Virtual-Reality Fusion Control Platform for Industrial Robots
Abstract
1. Introduction
2. System Design of Digital Twin-Based Industrial Robot Control Platform
2.1. Physical Entity
2.2. Virtual Model
2.3. Twin Data Acquisition and Input
2.4. Design of the Human–Machine Interaction Interface
3. Development and Integration of Motion Simulation for Digital Twin Industrial Robot Systems
3.1. Research on Robot Path Planning Algorithms
3.1.1. Joint Space-Based Trajectory Planning
3.1.2. Trajectory Planning Based on Cartesian Space
3.2. Design of a Robot Control Center with a Real–Virtual Synchronization Mechanism
3.3. Packaging and Motion Testing of Functions
4. Space Free-Form Surface Welding Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scholz, C.; Cao, H.-L.; Imrith, E.; Roshandel, N.; Firouzipouyaei, H.; Burkiewicz, A.; Amighi, M.; Menet, S.; Sisavath, D.W.; Paolillo, A.; et al. Sensor-enabled safety systems for human-robot collaboration: A review. IEEE Sens. J. 2024, 25, 65–88. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Zhang, J.; Zhong, R. Big data analytics for intelligent manufacturing systems: A review. J. Manuf. Syst. 2022, 62, 738–752. [Google Scholar] [CrossRef]
- Arents, J.; Greitans, M. Smart industrial robot control trends, challenges and opportunities within manufacturing. Appl. Sci. 2022, 12, 937. [Google Scholar] [CrossRef]
- Chodha, V.; Dubey, R.; Kumar, R.; Singh, S.; Kaur, S. Selection of industrial arc welding robot with TOPSIS and Entropy MCDM techniques. Mater. Today Proc. 2022, 50, 709–715. [Google Scholar] [CrossRef]
- Nguyen, Q.C.; Hua, H.Q.B.; Pham, P.T. Development of a vision system integrated with industrial robots for online weld seam tracking. J. Manuf. Process. 2024, 119, 414–424. [Google Scholar] [CrossRef]
- Wang, J.; Li, L.; Xu, P. Visual sensing and depth perception for welding robots and their industrial applications. Sensors 2023, 23, 9700. [Google Scholar] [CrossRef]
- Kouritem, S.A.; Abouheaf, M.I.; Nahas, N.; Hassan, M. A multi-objective optimization design of industrial robot arms. Alex. Eng. J. 2022, 61, 12847–12867. [Google Scholar] [CrossRef]
- Pedersen, M.R.; Nalpantidis, L.; Andersen, R.S.; Schou, C.; Bøgh, S.; Krüger, V.; Madsen, O. Robot skills for manufacturing. Robot. Comput. Integr. Manuf. 2016, 37, 282–291. [Google Scholar] [CrossRef]
- Li, J.; Zou, L.; Luo, G.; Wang, W.; Lv, C. Enhancement and evaluation in path accuracy of industrial robot for complex surface grinding. Robot. Comput. Integr. Manuf. 2023, 81, 102521. [Google Scholar] [CrossRef]
- Li, R.; Ding, N.; Zhao, Y.; Liu, H. Real-time trajectory position error compensation technology of industrial robot. Measurement 2023, 208, 112418. [Google Scholar] [CrossRef]
- Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital twin: Origin to future. Appl. Syst. Innov. 2021, 4, 36. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar]
- Grieves, M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication. White Pap. 2014, 1, 1–7. [Google Scholar]
- Tao, F.; Liu, W.; Zhang, M.; Hu, T.L.; Qi, Q.; Zhang, H. Five-dimension digital twin model and its ten applications. Comput. Integr. Manuf. Syst. 2019, 25, 1–18. [Google Scholar]
- Tuegel, E.J.; Ingraffea, A.R.; Eason, T.G.; Spottswood, S.M. Reengineering aircraft structural life prediction using a digital twin. Int. J. Aerosp. Eng. 2011, 2011, 154798. [Google Scholar] [CrossRef]
- Modoni, G.E.; Sacco, M. A Human Digital-Twin-Based Framework Driving Human Centricity towards Industry 5.0. Sensors 2023, 23, 6054. [Google Scholar] [CrossRef]
- Li, Z.; Mei, X.; Sun, Z.; Xu, J.; Zhang, J.; Zhang, D.; Zhu, J. A reference framework for the digital twin smart factory based on cloud-fog-edge computing collaboration. J. Intell. Manuf. 2024, 36, 3625–3645. [Google Scholar] [CrossRef]
- Chen, Z.; Surendraarcharyagie, K.; Granland, K.; Chen, C.; Xu, X.; Xiong, Y.; Davies, C.; Tang, Y. Service-oriented digital twin for additive manufacturing process. J. Manuf. Syst. 2024, 74, 762–776. [Google Scholar] [CrossRef]
- Yu, G.; Ye, X.; Xia, X.; Chen, Y. Digital twin enabled transition towards the smart electric vehicle charging infrastructure: A review. Sustain. Cities Soc. 2024, 108, 105479. [Google Scholar] [CrossRef]
- Mazumder, A.; Sahed, M.F.; Tasneem, Z.; Das, P.; Badal, F.R.; Ali, M.F.; Ahamed, M.; Abhi, S.; Sarker, S.; Das, S.; et al. Towards next generation digital twin in robotics: Trends, scopes, challenges, and future. Heliyon 2023, 9, e13359. [Google Scholar] [CrossRef]
- Zhang, Z.; Ji, Y.; Tang, D.; Chen, J.; Liu, C. Enabling collaborative assembly between humans and robots using a digital twin system. Robot. Comput. Integr. Manuf. 2024, 86, 102691. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.; Francis, A.; Luo, X. A novel calibration system for robot arm via an open dataset and a learning perspective. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 5169–5173. [Google Scholar] [CrossRef]
- Xu, W.; Cui, J.; Li, L.; Yao, B.; Tian, S.; Zhou, Z. Digital twin-based industrial cloud robotics: Framework, control approach and implementation. J. Manuf. Syst. 2021, 58, 196–209. [Google Scholar] [CrossRef]
- Kuts, V.; Otto, T.; Tähemaa, T.; Bondarenko, Y. Digital twin based synchronised control and simulation of the industrial robotic cell using virtual reality. J. Mach. Eng. 2019, 19, 128–144. [Google Scholar] [CrossRef]
- Kuts, V.; Marvel, J.A.; Aksu, M.; Pizzagalli, S.L.; Sarkans, M.; Bondarenko, Y.; Otto, T. Digital twin as industrial robots manipulation validation tool. Robotics 2022, 11, 113. [Google Scholar] [CrossRef]
- Cimino, A.; Longo, F.; Nicoletti, L.; Solina, V. Simulation-based Digital Twin for enhancing human-robot collaboration in assembly systems. J. Manuf. Syst. 2024, 77, 903–918. [Google Scholar] [CrossRef]
- Choi, S.H.; Park, K.B.; Roh, D.H.; Lee, J.Y.; Mohammed, M.; Ghasemi, Y.; Jeong, H. An integrated mixed reality system for safety-aware human-robot collaboration using deep learning and digital twin generation. Robot. Comput. Integr. Manuf. 2022, 73, 102258. [Google Scholar] [CrossRef]
- Yun, H.; Kim, H.; Jeong, Y.H.; Jun, M.B. Autoencoder-based anomaly detection of industrial robot arm using stethoscope based internal sound sensor. J. Intell. Manuf. 2023, 34, 1427–1444. [Google Scholar] [CrossRef]
- Abdi, A.; Adhikari, D.; Park, J.H. A novel hybrid path planning method based on q-learning and neural network for robot arm. Appl. Sci. 2021, 11, 6770. [Google Scholar] [CrossRef]
- Liu, J.; Cao, Y.; Li, Y.; Guo, Y.; Deng, W. Big Data Cleaning Based on Improved CLOF and Random Forest for Distribution Networks. CSEE J. Power Energy Syst. 2024, 10, 2528–2538. [Google Scholar]
- Ouahabi, N.; Chebak, A.; Kamach, O.; Laayati, O.; Zegrari, M. Leveraging digital twin into dynamic production scheduling: A review. Robot. Comput. Integr. Manuf. 2024, 89, 102778. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, D.; Tao, B.; Jiang, G.; Sun, Y.; Kong, J.; Tong, X.; Zhao, G.; Chen, B. Genetic algorithm-based trajectory optimization for digital twin robots. Front. Bioeng. Biotechnol. 2022, 9, 793782. [Google Scholar] [CrossRef]
- Chen, S.; Zong, G.; Kang, C.; Jiang, X. Digital Twin Virtual Welding Approach of Robotic Friction Stir Welding Based on Co-Simulation of FEA Model and Robotic Model. Sensors 2024, 24, 1001. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Yang, Z.; Xu, J.; Jiang, Y.; Wang, W.; Liu, Z.; Zhao, W.; Sun, Y. Progress, challenges, and trends on vision sensing technologies in automatic/intelligent robotic welding: State-of-the-art review. Robot. Comput. Integr. Manuf. 2024, 89, 102767. [Google Scholar] [CrossRef]
- Yu, S.; Guan, Y.; Hu, J.; Hong, J.; Zhu, H.; Zhang, T. Unified seam tracking algorithm via three-point weld representation for autonomous robotic welding. Eng. Appl. Artif. Intell. 2024, 128, 107535. [Google Scholar] [CrossRef]
Position/Joint Angle | Physical/ Virtual | Trajectory Point 1 | Trajectory Point 2 | Trajectory Point 3 | Trajectory Point 4 | Trajectory Point 5 | Trajectory Point 6 | Trajectory Point 7 | Trajectory Point 8 | Trajectory Point 9 |
---|---|---|---|---|---|---|---|---|---|---|
X/mm | Physical | 415.40 | 351.40 | 408.34 | 243.51 | 295.74 | 390.15 | 388.15 | −641.44 | 390.65 |
Virtual | 415.40 | 350.71 | 408.34 | 244.08 | 295.24 | 391.44 | 388.03 | −641.44 | 391.45 | |
Y/mm | Physical | 546.42 | 402.98 | 469.51 | 431.79 | 603.78 | 408.51 | 411.38 | 380.21 | 536.12 |
Virtual | 545.81 | 402.98 | 469.20 | 431.79 | 603.78 | 408.51 | 412.51 | 380.21 | 535.22 | |
Z/mm | Physical | −50.30 | −156.58 | −114.14 | −113.37 | −88.72 | −108.41 | −104.34 | −124.28 | −92.33 |
Virtual | −50.21 | −157.07 | −114.14 | −113.37 | −88.72 | −107.17 | −104.34 | −125.19 | −92.13 | |
J1/(°) | Physical | 2.09 | 13.02 | 8.95 | 28.57 | −17.61 | 14.35 | 7.65 | 12.42 | 19.21 |
Virtual | 2.09 | 13.05 | 8.93 | 27.85 | −17.50 | 14.18 | 7.61 | 12.47 | 19.38 | |
J2/(°) | Physical | 21.08 | 12.41 | 17.08 | 6.19 | −6.54 | 31.15 | 16.04 | 18.43 | 25.43 |
Virtual | 21.08 | 12.44 | 17.03 | 6.19 | −6.54 | 31.15 | 16.04 | 18.43 | 25.13 | |
J3/(°) | Physical | −23.84 | −18.29 | −23.84 | −29.47 | 25.34 | −24.17 | −15.19 | −27.15 | −23.59 |
Virtual | −22.51 | −18.29 | −22.71 | −29.47 | 25.34 | −24.17 | −16.42 | −27.11 | −23.29 | |
J4/(°) | Physical | −3.80 | −11.27 | −7.63 | 34.89 | −42.61 | −11.69 | −15.83 | −38.42 | −13.21 |
Virtual | −3.80 | −10.80 | −7.68 | 34.82 | −42.61 | −11.35 | −15.80 | −38.39 | −13.21 | |
J5/(°) | Physical | −75.46 | −74.37 | −73.66 | −71.84 | −48.47 | −64.32 | −76.93 | −63.72 | −73.12 |
Virtual | −75.46 | −74.42 | −73.60 | −71.84 | −48.41 | −64.32 | −77.12 | −63.82 | −73.10 | |
J6/(°) | Physical | 9.97 | 26.20 | 28.41 | 3.06 | 15.19 | 5.69 | 21.43 | 32.16 | 31.32 |
Virtual | 9.91 | 26.28 | 28.42 | 3.06 | 15.11 | 5.69 | 21.43 | 32.16 | 31.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, W.; Sun, W.; Chen, P.; Xu, H. Construction and Validation of a Digital Twin-Driven Virtual-Reality Fusion Control Platform for Industrial Robots. Sensors 2025, 25, 4153. https://doi.org/10.3390/s25134153
Chang W, Sun W, Chen P, Xu H. Construction and Validation of a Digital Twin-Driven Virtual-Reality Fusion Control Platform for Industrial Robots. Sensors. 2025; 25(13):4153. https://doi.org/10.3390/s25134153
Chicago/Turabian StyleChang, Wenxuan, Wenlei Sun, Pinghui Chen, and Huangshuai Xu. 2025. "Construction and Validation of a Digital Twin-Driven Virtual-Reality Fusion Control Platform for Industrial Robots" Sensors 25, no. 13: 4153. https://doi.org/10.3390/s25134153
APA StyleChang, W., Sun, W., Chen, P., & Xu, H. (2025). Construction and Validation of a Digital Twin-Driven Virtual-Reality Fusion Control Platform for Industrial Robots. Sensors, 25(13), 4153. https://doi.org/10.3390/s25134153