Borohydride Synthesis of Silver Nanoparticles for SERS Platforms: Indirect Glucose Detection and Analysis Using Gradient Boosting
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Stability Assessment of Silver Nanoparticles
2.3. Obtaining the PAN Material by Electrospinning
2.4. Providing Sensory Capabilities to the Non-Woven Material
2.4.1. Synthesis of SERS Substrates
- BH1, PAN + NaBH4 (2 mM) + AgNO3 (1.5 mM) + NaOH (after 1 min, 1 M);
- BH2, PAN + NaBH4 (2 mM) + AgNO3 (1.5 mM) + NaOH (after 10 min, 1 M);
- BH3, PAN + NaBH4 (2 mM) + AgNO3 (1.5 mM) + NaOH (after 30 min, 1 M);
- BH4, PAN + NaBH4 (20 mM) + AgNO3 (15 mM) + NaOH (after 1 min, 1 M);
- BH5, PAN + NaBH4 (20 mM) + AgNO3 (15 mM) + NaOH (after 10 min, 1 M);
- BH6, PAN + NaBH4 (20 mM) + AgNO3 (15 mM) + NaOH (after 30 min, 1 M).
2.4.2. Selection of the Alkali Concentration
2.5. Characterization of PAN-Based Plasmonic Substrates
2.6. 4-MBA Detection
2.7. Functionalization of GOx Sensors
2.8. Raman and SERS Measurements
2.9. Data Processing
3. Results and Discussion
3.1. Spectral Changes in AgNPs over Time and When Diluted with Water
3.2. The Effects of Alkali on AgNPs
3.3. Structural Characterization
3.4. Surface-Enhanced Raman Spectra (SERS) from 4-Mercaptobenzoic Acid (4-MBA)
- The shifting and broadening of characteristic peaks toward the shorter-wavelength region (hypsochromic shift), which may be related to changes in the chemisorption of the thiol group (−SH) on the nanoparticle surface or conformational changes in the molecule;
- The appearance of an additional peak in BH4 and BH5, likely due to the interaction of 4-MBA with impurities or the inhomogeneity of the substrate coating.
3.5. Glucose Detection
- Enhancement Factor and Sensitivity: While the EF (1.8 × 105) is comparable to or slightly lower than those of some other platforms, our substrate achieves a competitive LoD for glucose (0.66 mM) within the physiologically relevant range, making it suitable for non-invasive sensing. Although the EF and LoD were slightly lower than in our previous publication [34], the R2 coefficient for the gradient boosting regression model is much higher (0.971 compared to 0.756 in [34]).
- Application: The PAN substrate’s chemical and mechanical stability, combined with enzyme functionalization, enables indirect glucose detection with high selectivity.
- Cost and Practicality: The materials (PAN, AgNO3, NaBH4) are low-cost and widely available, making the approach attractive for disposable or point-of-care SERS devices.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SERS | surface-enhanced Raman scattering |
GOx | glucose oxidase |
NP | nanoparticle |
PAN | polyacrylonitrile |
EF | enhancement factor |
4-MBA | 4-mercaptobenzoic acid |
LoD | limit of detection |
SEM | scanning electron microscopy |
FWHM | full width at half maximum |
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, N.S.; Amit, U.; Reibel, J.B.; Berlin, E.; Howell, K.; Ky, B. Cardiovascular disease and cancer: Shared risk factors and mechanisms. Nat. Rev. Cardiol. 2024, 21, 617–631. [Google Scholar] [CrossRef] [PubMed]
- Eckel, R.H.; Bornfeldt, K.E.; Goldberg, I.J. Cardiovascular disease in diabetes, beyond glucose. Cell Metab. 2021, 33, 1519–1545. [Google Scholar] [CrossRef] [PubMed]
- Gnudi, L.; Coward, R.J.; Long, D.A. Diabetic Nephropathy: Perspective on Novel Molecular Mechanisms. Trends Endocrinol. Metab. 2016, 27, 820–830. [Google Scholar] [CrossRef]
- Merker, L.; Bautsch, B.W.; Ebert, T.; Guthoff, M.; Isermann, B. Nephropathy in Diabetes. Exp. Clin. Endocrinol. Diabetes 2021, 129, S60–S63. [Google Scholar] [CrossRef]
- Thipsawat, S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diabetes Vasc. Dis. Res. 2021, 18. [Google Scholar] [CrossRef]
- Degu, H.; Wondimagegnehu, A.; Yifru, Y.M.; Belachew, A. Is health related quality of life influenced by diabetic neuropathic pain among type II diabetes mellitus patients in Ethiopia? PLoS ONE 2019, 14, e0211449. [Google Scholar] [CrossRef]
- Barrot, J.; Real, J.; Vlacho, B.; Romero-Aroca, P.; Simó, R.; Mauricio, D.; Mata-Cases, M.; Castelblanco, E.; Mundet-Tuduri, X.; Franch-Nadal, J. Diabetic retinopathy as a predictor of cardiovascular morbidity and mortality in subjects with type 2 diabetes. Front. Med. 2022, 9, 945245. [Google Scholar] [CrossRef]
- Si, S.; Kaneko, T.; Xu, L.; Luo, H.; Nakajima, H.; Kasai, N.; Uchiyama, K.; Wu, D.; Zeng, H. Microsphere amplified fluorescence and its application in sensing. Biosens. Bioelectron. 2022, 218, 114791. [Google Scholar] [CrossRef]
- Saha, T.; Del Caño, R.; Mahato, K.; De la Paz, E.; Chen, C.; Ding, S.; Yin, L.; Wang, J. Wearable Electrochemical Glucose Sensors in Diabetes Management: A Comprehensive Review. Chem. Rev. 2023, 123, 7854–7889. [Google Scholar] [CrossRef]
- Hönes, J.; Müller, P.; Surridge, N. The Technology Behind Glucose Meters: Test Strips. Diabetes Technol. Ther. 2008, 10, S-10–S-26. [Google Scholar] [CrossRef]
- Dalvi, N. Glucose meter reference design. Appl. Note 2013, 1560, 1–20. [Google Scholar]
- Erbach, M.; Freckmann, G.; Hinzmann, R.; Kulzer, B.; Ziegler, R.; Heinemann, L.; Schnell, O. Interferences and Limitations in Blood Glucose Self-Testing. J. Diabetes Sci. Technol. 2016, 10, 1161–1168. [Google Scholar] [CrossRef]
- Chelaghmia, M.L.; Fisli, H.; Nacef, M.; Brownson, D.A.C.; Affoune, A.M.; Satha, H.; Banks, C.E. Disposable non-enzymatic electrochemical glucose sensors based on screen-printed graphite macroelectrodes modified via a facile methodology with Ni, Cu, and Ni/Cu hydroxides are shown to accurately determine glucose in real human serum blood samples. Anal. Methods 2021, 13, 2812–2822. [Google Scholar] [CrossRef]
- Hass, D.T.; Hurley, J.B. Glucose Concentration Assay (Hexokinase/G6PDH Method) v1. J. Biol. Chem. 2023. [Google Scholar] [CrossRef]
- Peterson, J.I.; Young, D.S. Evaluation of the hexokinase/glucose-6-phosphate dehydrogenase method of determination of glucose in urine. Anal. Biochem. 1968, 23, 301–316. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.n.; Li, L.; Li, X.; Zhao, Y. An Enzyme-Catalyzed Optical Fiber Optofluidic Laser Sensor for Cholesterol Detection Using Rhodamine B Hydrazide. Anal. Chem. 2025, 97, 4583–4589. [Google Scholar] [CrossRef]
- Mutuyimana, F.P.; Liu, J.; Na, M.; Nsanzamahoro, S.; Rao, Z.; Chen, H.; Chen, X. Synthesis of orange-red emissive carbon dots for fluorometric enzymatic determination of glucose. Microchim. Acta 2018, 185, 518. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, R.; Yue, X.; Zhou, Z.; Bai, L.; Tong, Y.; Wang, B.; Gu, D.; Wang, S.; Qiao, Y.; et al. Synthesis of Diboronic Acid-Based Fluorescent Probes for the Sensitive Detection of Glucose in Aqueous Media and Biological Matrices. ACS Sens. 2021, 6, 1543–1551. [Google Scholar] [CrossRef]
- Verma, A.K.; Noumani, A.; Yadav, A.K.; Solanki, P.R. FRET Based Biosensor: Principle Applications Recent Advances and Challenges. Diagnostics 2023, 13, 1375. [Google Scholar] [CrossRef]
- Di Filippo, D.; Sunstrum, F.; Khan, J.; Welsh, A. Non-Invasive Glucose Sensing Technologies and Products: A Comprehensive Review for Researchers and Clinicians. Sensors 2023, 23, 9130. [Google Scholar] [CrossRef]
- Gorst, A.; Zavyalova, K.; Mironchev, A. Non-Invasive Determination of Glucose Concentration Using a Near-Field Sensor. Biosensors 2021, 11, 62. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, Y.; Liu, L.; Qiao, Y.; Yang, C.; Wang, X.; Li, Q.; Li, Y. Visual whole-process monitoring of pesticide residues: An environmental perspective using surface-enhanced Raman spectroscopy with dynamic borohydride-reduced silver nanoparticles. J. Hazard. Mater. 2024, 465, 133338. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Lyu, X.; Ma, R.; Li, Y.; Zhang, T.; Liu, Y.; Sun, C.; Li, Y. Label-free detection of vitamin B by two-step enhanced Raman technique using dynamic borohydride-reduced silver nanoparticles. Microchim. Acta 2023, 190, 480. [Google Scholar] [CrossRef]
- Kang, J.W.; Park, Y.S.; Chang, H.; Lee, W.; Singh, S.P.; Choi, W.; Galindo, L.H.; Dasari, R.R.; Nam, S.H.; Park, J.; et al. Direct observation of glucose fingerprint using in vivo Raman spectroscopy. Sci. Adv. 2020, 6, eaay5206. [Google Scholar] [CrossRef]
- Pors, A.; Korzeniowska, B.; Rasmussen, M.T.; Lorenzen, C.V.; Rasmussen, K.G.; Inglev, R.; Philipps, A.; Zschornack, E.; Freckmann, G.; Weber, A.; et al. Calibration and performance of a Raman-based device for non-invasive glucose monitoring in type 2 diabetes. Sci. Rep. 2025, 15, 10226. [Google Scholar] [CrossRef]
- Qi, G.; Wang, Y.; Zhang, B.; Sun, D.; Fu, C.; Xu, W.; Xu, S. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose. Anal. Bioanal. Chem. 2016, 408, 7513–7520. [Google Scholar] [CrossRef]
- Sun, X. Glucose detection through surface-enhanced Raman spectroscopy: A review. Anal. Chim. Acta 2022, 1206, 339226. [Google Scholar] [CrossRef]
- Puente, C.; Sánchez-Domínguez, M.; Brosseau, C.L.; López, I. Silver-chitosan and gold-chitosan substrates for surface-enhanced Raman spectroscopy (SERS): Effect of nanoparticle morphology on SERS performance. Mater. Chem. Phys. 2021, 260, 124107. [Google Scholar] [CrossRef]
- da Silva, H.B.; Peixoto, L.P.d.F.; Andrade, G.F.S. Stability, Resuspensibility, and Evaluation as SERS Substrates of Gold Nanoparticle–Chitosan Nanocomposites. Plasmonics 2025. [Google Scholar] [CrossRef]
- Zhou, C.; Shi, Y.; Ding, X.; Li, M.; Luo, J.; Lu, Z.; Xiao, D. Development of a Fast and Sensitive Glucose Biosensor Using Iridium Complex-Doped Electrospun Optical Fibrous Membrane. Anal. Chem. 2013, 85, 1171–1176. [Google Scholar] [CrossRef]
- Khan, W.S. Chemical and Thermal Investigations of Electrospun Polyacrylonitrile Nanofibers Incorporated with Various Nanoscale Inclusions. J. Therm. Eng. 2017, 3, 1375–1390. [Google Scholar] [CrossRef]
- Sapountzi, E.; Chateaux, J.F.; Lagarde, F. Combining Electrospinning and Vapor-Phase Polymerization for the Production of Polyacrylonitrile/ Polypyrrole Core-Shell Nanofibers and Glucose Biosensor Application. Front. Chem. 2020, 8, 678. [Google Scholar] [CrossRef]
- Bakal, V.; Gusliakova, O.; Kartashova, A.; Saveleva, M.; Plastun, V.; Demina, P.; Kozhevnikov, I.; Serdobintsev, A.; Prikhozhdenko, E. Synthesis of silver nanoparticles on polyacrylonitrile nonwoven substrates with the silver mirror reaction for effective SERS detection of 4-MBA and glucose. Anal. Methods 2025, 17, 4548–4555. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Mayorova, O.A.; Saveleva, M.S.; Bratashov, D.N.; Prikhozhdenko, E.S. Combination of Machine Learning and Raman Spectroscopy for Determination of the Complex of Whey Protein Isolate with Hyaluronic Acid. Polymers 2024, 16, 666. [Google Scholar] [CrossRef]
- Haque, M.N.; Kwon, S.; Cho, D. Formation and stability study of silver nano-particles in aqueous and organic medium. Korean J. Chem. Eng. 2017, 34, 2072–2078. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Y.; Zhou, X.; Shen, A.; Hu, J. A “turn-off” SERS-based detection platform for ultrasensitive detection of thrombin based on enzymatic assays. Biosens. Bioelectron. 2013, 44, 10–15. [Google Scholar] [CrossRef]
- Tang, H.; Zhu, C.; Meng, G.; Wu, N. Review—Surface-Enhanced Raman Scattering Sensors for Food Safety and Environmental Monitoring. J. Electrochem. Soc. 2018, 165, B3098–B3118. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Y.; Zhang, Z. Fabricating a Three-Dimensional Surface-Enhanced Raman Scattering Substrate Using Hydrogel-Loaded Freeze-Induced Silver Nanoparticle Aggregates for the Highly Sensitive Detection of Organic Pollutants in Seawater. Sensors 2025, 25, 2575. [Google Scholar] [CrossRef]
- Abu Bakar, N.; Shapter, J.G. Silver nanostar films for surface-enhanced Raman spectroscopy (SERS) of the pesticide imidacloprid. Heliyon 2023, 9, e14686. [Google Scholar] [CrossRef] [PubMed]
- Boroujerdi, R.; Paul, R.; Abdelkader, A. Rapid Detection of Amitriptyline in Dried Blood and Dried Saliva Samples with Surface-Enhanced Raman Spectroscopy. Sensors 2022, 22, 8257. [Google Scholar] [CrossRef] [PubMed]
Sample | FWHM at 1 min, nm | FWHM at 180 min, nm |
---|---|---|
AgNPs | 60 | 61 |
AgNPs–H2O | 61 | 71 |
AgNPs–2 H2O | 51 | 140 |
2 AgNPs–H2O | 69 | 71 |
Sample | 1073 cm−1 | 1583 cm−1 |
---|---|---|
BH1 | 2.4 × 104 | 1.4 × 105 |
BH2 | 2.4 × 104 | 1.1 × 105 |
BH3 | 3.2 × 104 | 1.8 × 105 |
BH4 | 1.2 × 104 | 4.9 × 104 |
BH5 | 2.9 × 104 | 1.1 × 105 |
BH6 | 2.3 × 104 | 1.3 × 105 |
Model (Metric) | Substrate | Normalized Data | Non-Normalized Data |
---|---|---|---|
BH1 | 0.616 | 0.543 | |
Regression (R2) | BH2 | 0.909 | 0.971 |
BH3 | 0.831 | 0.737 | |
Classification | BH1 | 0.697 | 0.558 |
(accuracy) | BH2 | 0.938 | 0.932 |
BH3 | 0.706 | 0.704 |
Substrate | AgNP Synthesis | EF | LoD | Application | Reference |
---|---|---|---|---|---|
PAN non-woven | In situ borohydride reduction | 1.8 × 105 (4-MBA) | 0.66 mM (glucose) | 4-MBA, RhB, glucose (indirect) | Current article |
PAN non-woven | In situ silver mirror reaction | 2.5 × 106 (4-MBA) | 0.5 mM (glucose) | 4-MBA, glucose (indirect) | [34] |
Agarose hydrogel | Physically induced colloidal AgNP aggregates | 1.4 × 107 (malachite green) | 5 nM (malachite green) | Nile blue, crystal violet, malachite green | [40] |
Glass surface | Deposition of chemically reduced Ag nanostars in layers | 2.9 × 104 (imidacloprid) | 3.9 mM (imidacloprid) | Pesticide detection | [41] |
Filter paper | Dipping into AgNP suspension | Not mentioned | 34 μM (amitriptyline) | Antidepressant sensing | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakal, V.; Gusliakova, O.; Kartashova, A.; Saveleva, M.; Demina, P.; Kozhevnikov, I.; Ryabov, E.; Bratashov, D.; Prikhozhdenko, E. Borohydride Synthesis of Silver Nanoparticles for SERS Platforms: Indirect Glucose Detection and Analysis Using Gradient Boosting. Sensors 2025, 25, 4143. https://doi.org/10.3390/s25134143
Bakal V, Gusliakova O, Kartashova A, Saveleva M, Demina P, Kozhevnikov I, Ryabov E, Bratashov D, Prikhozhdenko E. Borohydride Synthesis of Silver Nanoparticles for SERS Platforms: Indirect Glucose Detection and Analysis Using Gradient Boosting. Sensors. 2025; 25(13):4143. https://doi.org/10.3390/s25134143
Chicago/Turabian StyleBakal, Viktoriia, Olga Gusliakova, Anastasia Kartashova, Mariia Saveleva, Polina Demina, Ilya Kozhevnikov, Evgenii Ryabov, Daniil Bratashov, and Ekaterina Prikhozhdenko. 2025. "Borohydride Synthesis of Silver Nanoparticles for SERS Platforms: Indirect Glucose Detection and Analysis Using Gradient Boosting" Sensors 25, no. 13: 4143. https://doi.org/10.3390/s25134143
APA StyleBakal, V., Gusliakova, O., Kartashova, A., Saveleva, M., Demina, P., Kozhevnikov, I., Ryabov, E., Bratashov, D., & Prikhozhdenko, E. (2025). Borohydride Synthesis of Silver Nanoparticles for SERS Platforms: Indirect Glucose Detection and Analysis Using Gradient Boosting. Sensors, 25(13), 4143. https://doi.org/10.3390/s25134143